Skip to main content
Log in

Phycobiliproteins, nitrogenous compounds and fatty acid contents in field-collected and cultured gametophytes of Porphyra dioica, a red sea vegetable

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The extensive variation in the biochemical composition of algal species is used as a source of potential bioactive compounds for applications in the agri-food industry and in the field of functional foods. Among these species, Porphyra/Pyropia spp. (nori, laver) are red sea vegetables which provide the foundation for a billion-dollar industry. In this study, we determine the growth and biochemical composition of distinct reproductive traits (females vs. males) in Porphyra dioica. In order to characterize and enhance through cultivation the bioactive profiles and biochemical composition of this sea vegetable, we determined the effects of environmental parameters (light and nutrients) on the growth of different life history traits (females vs. males) in cultured and field samples of P. dioica. In field-collected samples, females contained higher contents of phycoerythrin (9.71 ± 3.13 mg g−1 DW), PUFA (omega-3 fatty acids, 12.25 ± 0.78 mg g−1 DW; eicosapentaenoic acid, 11.54 ± 0.92 mg g−1 DW) and total fatty acids (TFA) (31.58 ± 2.5 mg g−1 DW) than males. The total nitrogen (TN) content was similar in both traits in the field, but the protein nitrogen (PN) was higher in males from field collections (42.80 mg g−1 DW). In culture, males and females responded differently to applied environmental factors, with an increase of some omega-6 fatty acids (e.g. 20:4 n-6 with an increase of 4.98 %TFA, 0.1 mg g−1 DW) in females and omega-7,9 fatty acids in males (increase of 13.75 %TFA, 0.79 mg g−1 DW in omega-7 and 1.59 %TFA in omega-9) associated with exposure to adverse conditions (N starvation under low light intensity). We discuss the possibility of using P. dioica as a promising source of functional new food products such as enriched nori in bioactive compounds such as monounsaturated and polyunsaturated fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beer S, Eshel A (1985) Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Aust J Mar Fresh Res 36:785–792

    CAS  Google Scholar 

  • Blouin NA, Brodie JA, Grossman AC, Xu P, Brawley SH (2011) Porphyra: a marine crop shaped by stress. Trends Plant Sci 16:29–37

    CAS  PubMed  Google Scholar 

  • Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacyglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226

    CAS  Google Scholar 

  • Brodie JA, Irvine LM (2003) Seaweeds of the British Isles: volume 1 Rhodophyta. Part 3B Bangiophycidae. Natural History Museum, London, p 167

    Google Scholar 

  • Chopin T, Gallant T, Davison I (1995) Phosphorus and nitrogen nutrition in Chondrus crispus (Rhodophyta): effects on total phosphorous and nitrogen content, carrageenan production, and photosynthetic pigments and metabolism. J Phycol 31:283–293

    CAS  Google Scholar 

  • Connan S, Stengel DB (2011) Impacts of ambient salinity and copper on brown algae: interactive effects on phenolic pool and assessment of metal binding capacity of phlorotannin. Aquat Toxicol 104:1–13

    CAS  PubMed  Google Scholar 

  • Connolly A, Piggott CO, FitzGerald RJ (2013) Characterisation of protein-rich isolates and antioxidative phenolic extracts from pale and black brewers’ spent grain. Int J Food Sci Technol 48:1670–1681

    CAS  Google Scholar 

  • Curb JD, Wergowske G, Dobbs JC, Abbott RD, Huang BJ (2000) Serum lipid effects of a high-monounsaturated fat diet based on macadamia nuts. Arch Intern Med 160:1154–1158

    CAS  PubMed  Google Scholar 

  • Drew KM (1949) Conchocelis-phase in the life-history of Porphyra umbilicalis (L.) Kutz. Nature 164:748–749

    Google Scholar 

  • Esteban R, Barrutia O, Artetxe U, Fernández-Marín B, Hernández A, García-Plazaola JI (2015) Internal and external factors affecting photosynthetic pigment composition in plants: a meta-analytical approach. New Phytol 206:268–280

    CAS  PubMed  Google Scholar 

  • Ferreira VS, Pinto RF, Sant’Anna C (2016) Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus. J Appl Microbiol 120:661–670

    CAS  PubMed  Google Scholar 

  • Figueroa FL, Salles S, Aguilera J, Jiménez C, Mercado J, Viñegla B, Flores-Moya A, Altamirano M (1997) Effects of solar radiation on photoinhibition and pigmentation in the red alga Porphyra leucosticta. Mar Ecol Prog Ser 151:81–90

    CAS  Google Scholar 

  • Floreto EAT, Teshima S (1998) The fatty acid composition of seaweeds exposed to different levels of light intensity and salinity. Bot Mar 41:467–481

    CAS  Google Scholar 

  • Guihéneuf F, Stengel DB (2015) Towards the biorefinery concept: interaction of light, temperature and nitrogen for optimizing the co-production of high-value compounds in Porphyridium purpureum. Algal Res 10:152–163

    Google Scholar 

  • Guihéneuf F, Gietl A, Stengel DB (2018) Temporal and spatial variability of mycosporine-like amino acids and pigments in three edible red seaweeds from western Ireland. J Appl Phycol 30:2573–2586

    Google Scholar 

  • Hafting JT, Craigie JS, Stengel DB, Loureiro RR, Buschmann AH, Yarish C, Critchley EMD (2015) Prospects and challenges for industrial production of seaweed bioactives. J Phycol 51:821–837

    CAS  PubMed  Google Scholar 

  • Hasler CM (1998) Functional foods: their role in disease prevention and health promotion. Food Technol 52:63e70

    Google Scholar 

  • Hotimchenko SV (2002) Fatty acid composition of algae from habitats with varying amounts of illumination. Russ J Mar Biol 28:218–220

    CAS  Google Scholar 

  • Ishihara K, Oyamada C, Matsushima R, Murata M, Muraoka T (2005) Inhibitory effect of porphyran, prepared from dried ‘nori’ on contact hypersensitivity in mice. Biosci Biotechnol Biochem 69:1824–1830

    CAS  PubMed  Google Scholar 

  • Khotimchenko SV (2006) Variations in lipid composition among different developmental stages of Gracilaria verrucosa (Rhodophyta). Bot Mar 49:34–38

    CAS  Google Scholar 

  • Kris-Etherton PM, Harris WS, Appel LJ, Nutrition C (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106:2747–2757

    PubMed  Google Scholar 

  • Lin R (2000) Physiological ecology of Porphyra sporophytes: growth, photosynthesis, respiration and pigments. PhD thesis, University of Alaska Fairbanks, Fairbanks, USA

  • Lin R, Stekoll MS (2011) Phycobilin content of the conchocelis phase of Alaskan Porphyra (Bangiales, Rhodophyta) species: responses to environmental variables. J Phycol 47:208–214

    PubMed  Google Scholar 

  • Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Martinez B, Rico JM (2002) Seasonal variation of P content and major N pools in Palmaria palmata (Rhodophyta). J Phycol 38:1082–1089

    CAS  Google Scholar 

  • McCandless EL, Craigie JS, Water JA (1973) Carrageenan in the gametophytic and sporophytic stages of Chondrus crispus. Planta 112:201–212

    CAS  PubMed  Google Scholar 

  • Morita K, Tobiishi K (2002) Increasing effect of nori on the fecal excretion of dioxin by rats. Biosci Biotechnol Biochem 66:2306–2313

    CAS  PubMed  Google Scholar 

  • Mumford TF, Miura A (1988) Porphyra as food: cultivation and economics. In: Lemby CA, Waaland JR (eds) Algae and human affairs. Cambridge University Press, Cambridge, pp 87–117

    Google Scholar 

  • Noda H, Amano H, Arashima K, Hashimoto S, Nisizawa K (1989) Antitumor activity of polysaccharides and lipids from marine algae. Nippon Suisan Gakk 55:1265–1271

    Google Scholar 

  • Okai Y, Higashi-Okai K, Yano Y, Otani S (1996) Identification of antimutagenic substances in an extract of edible red alga, Porphyra tenera (Asakusa-nori). Cancer Lett 100:235–240

    CAS  PubMed  Google Scholar 

  • Pereira R, Yarish C, Sousa-Pinto I (2006) The influence of stocking density, light and temperature on the growth, production and nutrient removal capacity of Porphyra dioica (Bangiales, Rhodophyta). Aquaculture 252:66–78

    CAS  Google Scholar 

  • Pereira R, Kraemer G, Yarish C, Sousa-Pinto I (2008) Nitrogen uptake by gametophytes of Porphyra dioica (Bangiales, Rhodophyta) under controlled-culture conditions. Eur J Phycol 43:107–118

    CAS  Google Scholar 

  • Sahoo D, Tang X, Yarish C (2002) Porphyra—the economic seaweed as a new experimental system. Curr Sci 83:1313–1316

    Google Scholar 

  • Schmid M, Guihéneuf F, Stengel DB (2014) Fatty acid contents and profiles of 16 macroalgae collected from the Irish coast at two seasons. J Appl Phycol 26:451–463

    CAS  Google Scholar 

  • Schmid M, Guihéneuf F, Stengel DB (2017) Ecological and commercial implications of temporal and spatial variability in the composition of pigments and fatty acids in five Irish macroalgae. Mar Biol 164:158

    Google Scholar 

  • Schneider JC, Roessler P (1994) Radiolabeling studies of lipids and fatty acids in Nannochloropsis (Eustigmatophyceae), an oleaginous marine alga. J Phycol 30:594–598

    CAS  Google Scholar 

  • Sloan AE (2002) The top ten functional food trends: the next generation. Food Technol 56:32e56

    Google Scholar 

  • Stengel DB, Connan S, Popper ZA (2011) Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnol Adv 29:483–501

    CAS  PubMed  Google Scholar 

  • Stengel DB, Conde-Álvarez R, Connan S, Nitschke U, Arenas F, Abreu H, Bonomi Barufi J, Chow F, Robledo D, Malta EJ, Mata M, Konotchick T, Nassar C, Pérez-Ruzafa Á, López D, Marquardt R, Vaz-Pinto F, Celis-Plá PSM, Hermoso M, Ruiz E, Ordoñez G, Flores P, Zanolla M, Bañares-España E, Altamirano M, Korbee N, Bischof K, Figueroa FL (2014) Short-term effects of CO2, nutrients and temperature on three marine macroalgae under solar radiation. Aquat Biol 22:159–176

    Google Scholar 

  • Tasende MG (2000) Fatty acid and sterol composition of gametophyte and sporophytes of Chondrus crispus (Gigartinaceae, Rhodophyta). Sci Mar 64:421–426

    CAS  Google Scholar 

  • Terés S, Barceló-Coblijn G, Benet M, Álvarez R, Bressani R, Halver JE, Escribá PV (2008) Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc Natl Acad Sci U S A 105:13811–13816

    PubMed  PubMed Central  Google Scholar 

  • Thompson PA, Harrison PJ, Whyte JNC (1990) Influence of irradiance on the fatty acid composition of phytoplankton. J Phycol 26:278–288

    CAS  Google Scholar 

  • Varela-Álvarez E, Stengel DB, Guiry MD (2004) The use of image processing in assessing conchocelis growth and conchospore production in Porphyra linearis. Phycologia 43:282–287

    Google Scholar 

  • Varela-Álvarez E, Stengel DB, Guiry MD (2007) Seasonal growth and phenotypic variation in Porphyra linearis (Rhodophyta) populations on the west coast of Ireland. J Phycol 43:90–100

    Google Scholar 

  • Varela-Álvarez E, Loureiro J, Paulino C, Serrão EA (2018) Polyploid lineages in the genus Porphyra. Sci Rep 8:8696

    PubMed  PubMed Central  Google Scholar 

  • Ward OP, Singh A (2005) Omega-3/6 fatty acids: alternative sources of production. Process Biochem 40:3627–3652

    CAS  Google Scholar 

  • Welters HJ, Diakogiannaki E, Mordue JM, Tadayyon M, Smith SA, Morgan NG (2006) Differential protective effects of palmitoleic acid and cAMP on caspase activation and cell viability in pancreatic beta-cells exposed to palmitate. Apoptosis 11:1231–1238

    CAS  PubMed  Google Scholar 

  • Yoshizawa Y, Enomoto A, Todoh H, Ametani A, Kaminogawa S (1993) Activation of murine macrophages by polysaccharide fractions from marine algae (Porphyra yezoensis). Biosci Biotechnol Biochem 57:1862–1866

    CAS  PubMed  Google Scholar 

  • Zhang Q, Li N, Zhou G, Lu X, Xu Z, Li Z (2003) In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodophyta) in aging mice. Pharmacol Res 48:151–155

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Department of Agriculture, Food and the Marine (Ireland) Project Reference No: 13/F/536 ‘Profiling and optimising chemical composition of red sea vegetables for enhanced bioactive yields’. We thank Liam Cronin for assistance with field sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Varela-Álvarez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

TABLE S1

Fatty acid composition (% of total FAME) of samples of P. dioica in Experiment 1, after 5 days culture under: 90 μmol photons m−2 s−1, 60 μmol photons m−2 s−1, 30 μmol photons m−2 s−1 with lab control values, and after 2.5 days culture under a post N-starvation treatment at 20 μmol photons m−2 s−1. TFA, total fatty acid contents are given as % of DW. Omega fatty acid families were considering grouping single fatty acids as: omega 3: 16:3 n-3, 18:3 n-3, 18:4 n-3, 20:5 n-3; omega 6: 18:2 n-6; 18:3 n-6, 20:2 n-6; 20:3 n-6, 20:4 n-6; omega 7: 16:1 n-7 and 18:1 n-7; omega 9: 18:1 n-9, 20:1 n-9, 22:1 n-9. Mean ± SD (n = 3–6). (DOCX 67 kb)

TABLE S2

Fatty acid composition (mg g-1 DW) of samples of P. dioica in Experiment 1, after in 5 days culture under: 90 μmol photons m−2 s−1, 60 μmol photons m−2 s−1, 30 μmol photons m−2 s−1 with lab control values, and after 2.5 days culture under a post N-starvation treatment at 20 μmol photons m−2 s−1. Omega 3: 16:3 n-3, 18:3 n-3, 18:4 n-3, 20:5 n-3; omega 6: 18:2 n-6; 18:3 n-6, 20:2 n-6; 20:3 n-6, 20:4 n-6; omega 7: 16:1 n-7 and 18:1 n-7; omega 9: 18:1 n-9, 20:1 n-9, 22:1 n-9. Mean ± SD (n = 3–6). (DOCX 231 kb)

TABLE S3

ANOVA summary table for 20:4 n-6 (% TFA), Experiment 1, Stage 1 (5 days culture). (DOCX 231 kb)

TABLE S4

ANOVA summary table for 18:2 n-6 (mg g-1 DW), Experiment 1, Stage 1 (5 days culture). (DOCX 231 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varela-Álvarez, E., Tobin, P.R., Guihéneuf, F. et al. Phycobiliproteins, nitrogenous compounds and fatty acid contents in field-collected and cultured gametophytes of Porphyra dioica, a red sea vegetable. J Appl Phycol 31, 3849–3860 (2019). https://doi.org/10.1007/s10811-019-01841-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-01841-6

Keywords

Navigation