Skip to main content

Advertisement

Log in

A comparison of protocols for isolating and concentrating protein from the green seaweed Ulva ohnoi

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

We compared protocols to isolate and concentrate protein from the green seaweed Ulva ohnoi. We quantified the effect of three factors on protein and essential amino acid yields and concentrations in protein isolates and residuals in a factorial experimental design. The three factors were starting material (as dry and milled or fresh and pulped), aqueous solvent-to-biomass ratio (20:1 or 5:1 v/w) and the incubation time in the aqueous solvent (incubated for 16 h at 30 °C or incubated for <1 min at ambient temperature). The protein isolation protocols increased the concentration of protein, total essential amino acids, methionine and lysine ~3 to 5-fold compared to whole U. ohnoi and were considerably more effective than the different protein concentrating combinations, which only increased protein and amino acid concentrations by 30–40 % in the residual biomass. The use of fresh and pulped biomass as the starting material, an incubation time of <1 min at ambient temperature and a low aqueous solution volume resulted in the highest protein isolate yield of 22 % of the protein found in seaweed. This study demonstrated that proteins from U. ohnoi were most effectively isolated by adopting protocols for terrestrial leaves compared to the protocols employed for seed crops as traditionally applied to seaweeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agboola S, Ng D, Mills D (2005) Characterisation and functional properties of Australian rice protein isolates. J Cereal Sci 41:283–290

    Article  CAS  Google Scholar 

  • Alves A, Sousa RA, Reis RL (2013) A practical perspective on ulvan extracted from green algae. J Appl Phycol 25:407–424

    Article  CAS  Google Scholar 

  • Anderson M, Gorley R (2007) PERMANOVA+ fo r PRIMER: guide to software and statistic al methods. PRIMER-E, Plymouth, England

    Google Scholar 

  • Angell AR, Pirozzi I, de Nys R, Paul NA (2012) Feeding preferences and the nutritional value of tropical algae for the abalone Haliotis asinina. PLoS One 7(6):e38857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angell AR, Mata L, de Nys R, Paul NA (2014) Variation in amino acid content and its relationship to nitrogen content and growth rate in Ulva ohnoi (Chlorophyta). J Phycol 50:216–226

    Article  CAS  PubMed  Google Scholar 

  • Angell AR, Angell SF, de Nys R, Paul NA (2016) Seaweed as a protein source for mono-gastric livestock. Trends Food Sci Technol In press

  • Bals B, Dale BE (2011) Economic comparison of multiple techniques for recovering leaf protein in biomass processing. Biotechnol Bioeng 108:530–537

    Article  CAS  PubMed  Google Scholar 

  • Barba FJ, Grimi N, Vorobiev E (2015) Evaluating the potential of cell disruption technologies for green selective extraction of antioxidant compounds from Stevia rebaudiana Bertoni leaves. J Food Eng 149:222–228

    Article  CAS  Google Scholar 

  • Barros FCN, da Silva DC, Sombra VG, Maciel JS, Feitosa JPA, Freitas ALP, de Paula RCM (2013) Structural characterization of polysaccharide obtained from red seaweed Gracilaria caudata (J Agardh). Carbohydr Polym 92:598–603

    Article  CAS  PubMed  Google Scholar 

  • Berk Z (1992) Technology of production of edible flours and protein products from soybean. FAO Agricultural Services Bulletin 97, FAO, Rome

  • Bikker P, Krimpen MM, Wikselaar P, Houweling-Tan B, Scaccia N, Hal JW, Huijgen WJ, Cone JW, López-Contreras AM (2016) Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. J Appl Phycol. doi:10.1007/s10811-016-0842-3

    PubMed  PubMed Central  Google Scholar 

  • BobinDubigeon C, Lahaye M, Guillon F, Barry JL, Gallant DJ (1997) Factors limiting the biodegradation of Ulva sp cell-wall polysaccharides. J Sci Food Agric 75:341–351

    Article  CAS  Google Scholar 

  • Bolton J, Robertson-Andersson D, Shuuluka D, Kandjengo L (2009) Growing Ulva (Chlorophyta) in integrated systems as a commercial crop for abalone feed in South Africa: a SWOT analysis. J Appl Phycol 21:575–583

    Article  Google Scholar 

  • Bosch L, Alegría A, Farré R (2006) Application of the 6-aminoquinolyl-N-hydroxysccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods. J Chromatogr B 831:176–183

    Article  CAS  Google Scholar 

  • Chiesa S, Gnansounou E (2011) Protein extraction from biomass in a bioethanol refinery–possible dietary applications: use as animal feed and potential extension to human consumption. Bioresour Technol 102:427–436

    Article  CAS  PubMed  Google Scholar 

  • Cohen SA (2000) Amino acid analysis using precolumn derivatization with 6-aminoquinolyl-n-hydroxysuccinimidyl carbamate. In: Cooper C, Packer N, Williams K (eds) Amino Acid Analysis Protocols, vol 159. Methods in Molecular Biology. Humana Press, pp 39–47

  • Dierick N, Ovyn A, De Smet S (2009) Effect of feeding intact brown seaweed Ascophyllum nodosum on some digestive parameters and on iodine content in edible tissues in pigs. J Sci Food Agric 89:584–594

    Article  CAS  Google Scholar 

  • Ellis RJ (1979) The most abundant protein in the world. Trends Biochem Sci 4:241–244

    Article  CAS  Google Scholar 

  • Evans F, Critchley A (2014) Seaweeds for animal production use. J Appl Phycol 26:891–899

    Article  CAS  Google Scholar 

  • Fernández S, Padilla A, Mucciarelli S (1999) Protein extraction from Atriplex lampa leaves: potential use as forage for animals used for human diets. Plant Food Hum Nutr 54:251–259

    Article  Google Scholar 

  • Fleurence J, LeCoeur C, Mabeau S, Maurice M, Landrein A (1995) Comparison of different extractive procedures for proteins from the edible seaweeds Ulva rigida and Ulva rotundata. J Appl Phycol 7:577–582

    Article  CAS  Google Scholar 

  • Harnedy PA, FitzGerald RJ (2011) Bioactive proteins, peptides, and amino acids from macroalgae. J Phycol 47:218–232

    Article  CAS  PubMed  Google Scholar 

  • Harnedy PA, FitzGerald RJ (2013) Extraction of protein from the macroalga Palmaria palmata. LWT-Food Sci Technol 51:375–382

    Article  CAS  Google Scholar 

  • Jazrawi C, Biller P, He Y, Montoya A, Ross AB, Maschmeyer T, Haynes BS (2015) Two-stage hydrothermal liquefaction of a high-protein microalga. Algal Res 8:15–22

    Article  Google Scholar 

  • Jordan P, Vilter H (1991) Extraction of proteins from material rich in anionic mucilages: partition and fractionation of vanadate-dependent bromoperoxidases from the brown algae Laminaria digitata and L. saccharina in aqueous polymer two-phase systems. Biochim Biophys Acta-Gen Subj 1073:98–106

    Article  CAS  Google Scholar 

  • Ju Z, Hettiarachchy N, Rath N (2001) Extraction, denaturation and hydrophobic properties of rice flour proteins. J Food Sci 66:229–232

    Article  CAS  Google Scholar 

  • Kadam SU, Tiwari BK, O’Donnell CP (2013) Application of novel extraction technologies for bioactives from marine algae. J Agric Food Chem 61:4667–4675

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy G, Karuppiah SK, Rao PVS (2012) Salt- and pH-induced functional changes in protein concentrate of edible green seaweed Enteromorpha species. Fisheries Sci 78:169–176

    Article  CAS  Google Scholar 

  • Katayama M, Fukuda T, Okamura T, Suzuki E, Tamura K, Shimizu Y, Suda Y, Suzuki K (2011) Effect of dietary addition of seaweed and licorice on the immune performance of pigs. Anim Sci J 82:274–281

    Article  CAS  PubMed  Google Scholar 

  • Kolender AA, Matulewicz MC (2002) Sulfated polysaccharides from the red seaweed Georgiella confluens. Carbohydr Res 337:57–68

    Article  CAS  PubMed  Google Scholar 

  • Kraan S (2012) Algal polysaccharides, novel applications and outlook. In: Chang C-F (ed) Carbohydrates—comprehensive studies on glycobiology and glycotechnology. InTech, Rijeka pp 489–532

  • Kumar KS, Ganesan K, Selvaraj K, Rao PVS (2014) Studies on the functional properties of protein concentrate of Kappaphycus alvarezii (Doty) Doty—an edible seaweed. Food Chem 153:353–360

    Article  Google Scholar 

  • Lawton RJ, Mata L, de Nys R, Paul NA (2013) Algal bioremediation of waste waters from land-based aquaculture using Ulva: selecting target species and strains. PLoS One 8(10):e77344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Guillard C, Bergé J-P, Donnay-Moreno C, Bruzac S, Ragon J-Y, Baron R, Fleurence J, Dumay J (2016) Soft liquefaction of the red seaweed Grateloupia turuturu Yamada by ultrasound-assisted enzymatic hydrolysis process. J Appl Phycol 28:2575–2585

    Article  CAS  Google Scholar 

  • Maciel JS, Chaves LS, Souza BWS, Teixeira DIA, Freitas ALP, Feitosa JPA, de Paula RCM (2008) Structural characterization of cold extracted fraction of soluble sulfated polysaccharide from red seaweed Gracilaria birdiae. Carbohydr Polym 71:559–565

    Article  CAS  Google Scholar 

  • Magnusson M, Carl C, Mata L, Rd N, Paul NA (2016) Seaweed salt from Ulva: a novel first step in a cascading biorefinery model. Algal Res 16:308–316

    Article  Google Scholar 

  • Masters DG, Benes SE, Norman HC (2007) Biosaline agriculture for forage and livestock production. Agric Ecosyst Environ 119:234–248

    Article  CAS  Google Scholar 

  • Mata L, Schuenhoff A, Santos R (2010) A direct comparison of the performance of the seaweed biofilters, Asparagopsis armata and Ulva rigida. J Appl Phycol 22:639–644

    Article  CAS  Google Scholar 

  • Mata L, Magnusson M, Paul NA, de Nys R (2016) The intensive land-based production of the green seaweeds Derbesia tenuissima and Ulva ohnoi: biomass and bioproducts. J Appl Phycol 28:365–375

    Article  CAS  Google Scholar 

  • McDermid KJ, Stuercke B (2003) Nutritional composition of edible Hawaiian seaweeds. J Appl Phycol 15:513–524

    Article  CAS  Google Scholar 

  • McDermid KJ, Stuercke B, Balazs GH (2007) Nutritional composition of marine plants in the diet of the green sea turtle (Chelonia mydas) in the Hawaiian islands. Bull Mar Sci 81:55–71

    Google Scholar 

  • Melo MRS, Feitosa JPA, Freitas ALP, de Paula RCM (2002) Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea. Carbohydr Polym 49:491–498

    Article  CAS  Google Scholar 

  • Neveux N, Yuen A, Jazrawi C, He Y, Magnusson M, Haynes B, Masters A, Montoya A, Paul N, Maschmeyer T (2014) Pre-and post-harvest treatment of macroalgae to improve the quality of feedstock for hydrothermal liquefaction. Algal Res 6:22–31

    Article  Google Scholar 

  • Nielsen MM, Bruhn A, Rasmussen MB, Olesen B, Larsen MM, Moller HB (2012) Cultivation of Ulva lactuca with manure for simultaneous bioremediation and biomass production. J Appl Phycol 24:449–458

    Article  Google Scholar 

  • Pirie N (1969) The production and use of leaf protein. Proc Nutr Soc 28:85–91

    Article  CAS  PubMed  Google Scholar 

  • Ray B (2006) Polysaccharides from Enteromorpha compressa: isolation, purification and structural features. Carbohydr Polym 66:408–416

    Article  CAS  Google Scholar 

  • Šic Žlabur J, Voća S, Dobričević N, Pliestić S, Galić A, Boričević A, Borić N (2016) Ultrasound-assisted extraction of bioactive compounds from lemon balm and peppermint leaves. Int Agrophysics 30:95–104

    Google Scholar 

  • Sinclair S (2009) Protein extraction from pasture. Literature review Part A: The plant fractionation bio-process and adaptability to farming systems. Milestone Report prepared for MAF SFF Grant C 8

  • Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Plant Biol 53:449–475

    Article  CAS  Google Scholar 

  • Tan SH, Mailer RJ, Blanchard CL, Agboola SO (2011) Canola proteins for human consumption: extraction, profile, and functional properties. J Food Sci 76:R16–R28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turhan K, Barbano D, Etzel M (2003) Fractionation of caseins by anion-exchange chromatography using food-grade buffers. J Food Sci 68:1578–1583

    Article  CAS  Google Scholar 

  • Wong KH, Cheung PCK (2001a) Influence of drying treatment on three Sargassum species 2. Protein extractability, in vitro protein digestibility and amino acid profile of protein concentrates. J Appl Phycol 13:51–58

    Article  CAS  Google Scholar 

  • Wong KH, Cheung PCK (2001b) Nutritional evaluation of some subtropical red and green seaweeds part II. In vitro protein digestibility and amino acid profiles of protein concentrates. Food Chem 72:11–17

    Article  CAS  Google Scholar 

  • Yamamoto M (1980) Physicochemical studies on sulfated polysaccharides extracted from seaweeds at various temperatures. Agric Biol Chem 44:589–593

    CAS  Google Scholar 

  • Yu G, Zhang Y, Schideman L, Funk T, Wang Z (2011) Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae. Energy Environ Sci 4:4587–4595

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is part of the MBD Energy Research and Development program for Biological Carbon Capture and Storage. The project is supported by the Advanced Manufacturing Cooperative Research Centre (AMCRC), funded through the Australian Government’s Cooperative Research Centre Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex R. Angell.

Electronic supplementary material

Figure S1

Turbidity changes (±S.E.) of U. ohnoi proteins extracted using (A) aqueous and (B) alkaline solution (pH = 12) for dry and milled (DM) and fresh and pulped (FP) biomass with changing pH. (GIF 25 kb)

High Resolution Image (TIFF 7371 kb)

Figure S2

The concentration of ash in the aqueous and alkaline total residuals (± S.E.) for the six treatment combinations examined in the factorial design (see Figs. 1 & 3). Dashed line represents the concentration of ash in the original biomass. (GIF 41 kb)

High Resolution Image (TIFF 10348 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angell, A.R., Paul, N.A. & de Nys, R. A comparison of protocols for isolating and concentrating protein from the green seaweed Ulva ohnoi . J Appl Phycol 29, 1011–1026 (2017). https://doi.org/10.1007/s10811-016-0972-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0972-7

Keywords

Navigation