Skip to main content
Log in

Adaptive responses and arsenic transformation potential of diazotrophic Cyanobacteria isolated from rice fields of arsenic affected Bengal Delta Plain

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In the Bengal Delta Plains (BDP) of South Asia, there is an increased report of bioaccumulation of arsenic (As) in rice grains and plants which can ultimately result in health hazards in human population consuming rice as a primary staple food. Five abundant cyanobacteria were isolated from the rice fields of BDP and maintained in vitro. The characterized isolates resembled Leptolyngbya sp. (isolate LBK), Nostoc spp. (isolates NOC and NOK) and Westiellopsis spp. (isolates WEC and WEK) based on polyphasic taxonomy. All the five isolates were assessed for biotransformation potential of As vis-à-vis adaptability and survivality under different levels of arsenite compared to control set of experiments. Adaptive changes of cyanobacterial photosynthetic pigments in terms of autofluorescence emission along with nitrogenase activity and exopolysaccharide production were measured for all isolates. The inorganic As absorption in terms of bioconcentration factor (BCF) in dry biomass was found to be highest in NOC (0.201–0.220), followed by NOK (0.147–0.150), WEK (0.071–0.074), WEC (0.051) and LBK (0.014) when exposed in presence of higher (200–400 μM) to lower (100 μM) arsenite concentrations respectively for 7 days. The transformation of arsenite to relatively less toxic arsenate was detected in varying efficiency in all the studied isolates. When treated with 100–400 μM arsenite, 9.58–78.4 % arsenate was detected in growth medium whereas 33–100 % in dry biomass of cyanobacterial isolates. The cyanobacterial isolates of this study could be potentially applied to reduce bioavailability of As in rice fields of South Asia based on further field trials, thereby ultimately rendering rice grains safe for human consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alam MK, Hassan AKMS, Khan MR, and Whitney JW (1990) Geological map of Bangladesh, Geol. Surv. of Bangladesh, Dhaka.

  • Anagnostidis K, Komárek J (1990) Modern approach to the classification system of cyanophytes. Teil 5-Stigonematales. Arch Hydrobiol Algol Stud 59:1–73

    Google Scholar 

  • ATSDR (2001) CERCLA Priority list of hazardous substances. Available at http://www.atsdr.cdc.govlelist.html (last Access 4 October 2015)

  • Bahar MM, Meghraj M, Naidu R (2013) Toxicity, transformation and accumulation of inorganic arsenic species in a microalga Scenedesmus sp. isolated from soil. J Appl Phycol 25:913–917

    Article  CAS  Google Scholar 

  • Banerjee M (2008) Arsenic. A threatening environmental issue and role of cyanobacteria in toxicity mitigation. J Ecophysiol Occup Health 8:153–159

    CAS  Google Scholar 

  • Bary RH, Kürtz LT (1945) Determination of total, organic and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  Google Scholar 

  • Berges JA, Falkowski PG (1998) Physiological stress and cell death in marine phytoplankton: induction of proteases in response to nitrogen or light limitation. Limnol Oceanogr 43:129–135

    Article  CAS  Google Scholar 

  • Bergman B (1986) Glyoxylate induced changes in the carbon and nitrogen metabolism of the cyanobacterium Anabaena cylindrica. Plant Physiol 80:698–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • BGS & DPHE (2001) Arsenic contamination of groundwater in Bangladesh. Technical report WC/00/19.4. In: Kinniburgh DG, Smedley PL (eds) British Geological survey, Keyworth

  • Bhattacharjee H, Rosen BP (2007) Arsenic metabolism in prokaryotic and eukaryotic microbes. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Springer, Berlin, pp 371–406

    Chapter  Google Scholar 

  • Bhattacharya P, Chatterjee D, Jacks G (1997) Occurrence of arsenic-contaminated groundwater in alluvial aquifers from delta plains, Eastern India: options for safe drinking water supply. Water Resour Dev 13:79–92

    Article  Google Scholar 

  • Bhattacharya P, Jacks G, Jana J, Sracek A, Gustafsson JP, Chatterjee D (2001) Geochemistry of the Holocene alluvial sediments of Bengal Delta Plain from West Bengal, India; implications on arsenic contamination in ground-water. In: Jacks G, Bhattacharya P, Khan AA (eds) Ground water arsenic contamination in the Bengal Delta Plain of Bangladesh: KTH special publication. TRITA-AMI Report, Stockholm, pp 21–40

    Google Scholar 

  • Bhattacharya P, Samal AC, Majumdar J, Santra SC (2009) Transfer of arsenic from ground water and paddy soil to rice plant (Oryza sativa L.): a micro level study in West Bengal, India. World J Agric Sci 5:425–431

    CAS  Google Scholar 

  • Billi D, Viaggiu E, Cockell CS, Rabbow E, Horneck G, Onofri S (2011) Damage escape and repair in dried Chroococcidiopsis spp. from hot and cold deserts exposed to simulated space and Martian conditions. Astrobiology 11:65–73

    Article  CAS  PubMed  Google Scholar 

  • Boivin P, Favre F, Hammecker C, Maeght JL, Delarivière J, Poussin JC, Wopereis MCS (2002) Processes driving soil solution chemistry in a flooded rice-cropped vertisol: analysis of longtime monitoring data. Geoderma 110:87–107

    Article  CAS  Google Scholar 

  • Bordowitz JR, Montgomery BL (2010) Exploiting the autofluorescent properties of photosynthetic pigments for analysis of pigmentation and morphology in live Fremyella diplosiphon cells. Sensors 10:6969–6979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boström KH, Simu Hagström Å, Riemann L (2004) Optimization of DNA extraction for quantitative marine bacterioplankton community analysis. Limnol Oceanogr Methods 2:365–373

    Article  Google Scholar 

  • Budd K, Craig SR (1981) Resistance to arsenate toxicity in the blue green alga Synechococcus leopoliensis. Can J Bot 59:1518–1521

    Article  CAS  Google Scholar 

  • Chatterjee D, Halder D, Majumder S, Biswas A, Nath B, Bhattacharya P, Bhowmick S, Mukherjee-Goswami A, Saha D, Hazra R, Maity PB, Chatterjee D, Mukherjee A, Bundschuh J (2010) Assessment of arsenic exposure from groundwater and rice in Bengal Delta region, West Bengal India. Water Res 44:5803–5812

    Article  CAS  PubMed  Google Scholar 

  • Chen RD, Le MP, Vidal J, Jacquot JP, Gadal R (1988) Purification and comparative properties of the cytosolic isocitrate dehydrogenase (NADP) from pea (Pisum sativum) roots and green leaves. Eur J Biochem 175:565–572

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK, Basu GC (2000) Ground water arsenic contamination in Bangladesh and West Bengal, India. Environ Health Perspect 108:393–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleiss-Arnold J, Koechler S, Proux C, Fardeau M-L, Dillies M-A, Coppee J-Y, Arsene-Ploetze F, Bertin PN (2010) Temporal transcriptomic response during arsenic stress in Herminiimonas arsenicoxydans. BMC Genomics 11:709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa PS, Scholte LLS, Reis MP, Chaves AV, Oliveira PL, Itabayana LB, Suhadolnik MSL, Barbosa FAR, Chartone-Souza E, Nascimento AMA (2014) Bacteria and genes involved in arsenic speciation in sediment impacted by long-term gold mining. PLoS One 9:e95655

    Article  PubMed  PubMed Central  Google Scholar 

  • Datta BK, Mishra A, Singh A, Sar TK, Sarkar S, Bhattacharya A, Chakraborty AK, Mandal TK (2010) Chronic arsenicosis in cattle with special reference to its metabolism in arsenic endemic village of Nadia district West Bengal India. Sci Total Environ 409:284–288

    Article  CAS  PubMed  Google Scholar 

  • Debnath M, Mandal NC, Ray S (2012) Effect of fungicides and insecticides on growth and enzyme activity of four cyanobacteria. Indian J Microbiol 52:275–280

    Article  CAS  PubMed  Google Scholar 

  • Desikachary TV (1959) Cyanophyta. (Monographs on algae). Indian Council of Agricultural Research, New Delhi, p 686

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Duke CS, Cezeaux A, Allen MM (1989) Changes in polypeptide composition of Synechocystis sp. strain 6308 phycobilisomes induced by nitrogen starvation. J Bacteriol 160:1960–1966

    Google Scholar 

  • FAO (1985) Water quality guide lines for maximum crop production. Food and Agricultural Organization/UN. Available online at:www.fao.org/docrep/ T0551E.2006/9/13

  • Ferrari SG, Silvaa PG, Gonzálezb DM, Navonic JA, Silvaa HJ (2013) Arsenic tolerance of cyanobacterial strains with potential use in biotechnology. Rev Argent Microbiol 45:174–179

    CAS  PubMed  Google Scholar 

  • Franklin DJ, Airs RL, Fernandez M, Bell TG, Bongaerts RJ, Berges JA, Malin G (2012) Identification of senescence and death in Emiliania huxleyi and Thalassiosira pseudonana: cell staining, chlorophyll alterations, and dimethylsulfoniopropionate (DMSP) metabolism. Limnol Oceanogr 57:305–317

    Article  CAS  Google Scholar 

  • Gao S, Tanji KK, Scardaci SC, Chow AT (2002) Comparison of redox indicators in a paddy soil during rice-growing season. Soil Sci Soc Am J 66:805–817

    Article  CAS  Google Scholar 

  • Geider RJ, Laroche J, Greene RM, Olaizola M (1993) Response of the photosynthetic apparatus of Phaeodactylum tricornutum (Bacillariophyceae) to nitrate, phosphate, or iron starvation. J Phycol 29:755–766

    Article  CAS  Google Scholar 

  • Ghosh D, Bhadury P, Routh J (2014) Diversity of arsenite oxidizing bacterial communities in arsenic rich deltaic aquifers in West Bengal, India. Front Microbiol 5:1–14

    Article  Google Scholar 

  • Ghosh D, Routh J, Bhadury P (2015) Characterization and microbial utilization of dissolved lipid organic fraction in arsenic impacted aquifers (India). J Hydrol 527:221–231

    Article  CAS  Google Scholar 

  • Guillard RL (1973) Division rates. In: Stein JR (ed) Handbook of phycological methods.culture methods and growth measurements. Cambridge University Press, USA, pp 290–311

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis programme for Windows95/98/NT. Nucleic Acids Symp 41:95–98

    CAS  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  CAS  PubMed  Google Scholar 

  • Hamamura N, Macur RE, Korf S, Ackerman G, Taylor WP, Kozubal M, Reysenbach AL, Inskeep WP (2009) Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments. Environ Microbiol 11:421–431

    Article  CAS  PubMed  Google Scholar 

  • Harnandez A, Mellado RP, Martinez JL (1998) Metal accumulation and vanadium induced multidrug resistance by environmental isolates of Escherichia herdmanni and Enterobacter cloaeae. Appl Environ Microbiol 64:4317–4320

    Google Scholar 

  • Hasegawa H, Rahman MA, Kitahara K, Itaya Y, Maki T, Ueda K (2010) Seasonal changes of arsenic speciation in lake waters in relation to eutrophication. Sci Total Environ 408:1684–1690

    Article  CAS  PubMed  Google Scholar 

  • Huertas MJ, López-Maury L, Giner-Lamia J, Sánchez-Riego AM, Florencio FJ (2014) Metals in cyanobacteria: analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Life 4:865–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson CR, Dugas SL (2003) Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase. BMC Evol Biol 3:18–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaplan D, Christiaen D, Arad SM (1987) Chelating properties of extracellular polysaccharides from Chlorella spp. Appl Environ Microbiol 53:2953–2956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiran B, Kaushik A (2008) Chromium binding capacity of Lyngbya putealis exopolysaccarides. Biochem Eng J 38:47–54

    Article  CAS  Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota. Part 2. Oscillatoriales. Elsevier Spektrum, Munich, p 759

    Google Scholar 

  • Komárek J, Kastrovosý J, Marešl J, Johansen JR (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86:295–335

    Google Scholar 

  • Lakshmipathiraj P, Narasimhan BRV, Prabhakar S, Raju B (2006) Adsorption of arsenate on synthetic goethite from aqueous solutions. J Hazard Mater 136:281–287

    Article  CAS  PubMed  Google Scholar 

  • Leganés F, Fernéndez-Valiente E (1992) Effects of phenoxyacetic herbicides on growth, photosynthesis and nitrogenase activity in the cyanobacteria from rice fields. Arch Environ Contam Toxicol 22:130–134

    Article  PubMed  Google Scholar 

  • Levy JL, Stauber JL, Adams MS, Maher WA, Kirby JK, Jolley DF (2005) Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum). Environ Toxicol Chem 24:2630–2639

    Article  CAS  PubMed  Google Scholar 

  • Liu WJ, Zhu YG, Hu Y, Williams PN, Gault GA, Meharg AA, Charnock JM, Smith FA (2006) Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environ Sci Technol 40:5730–5736

    Article  CAS  PubMed  Google Scholar 

  • López-Maury L, Florencio FJ, Reyes JC (2003) Arsenic sensing and resistance system in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 185:5363–5371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 40:315–322

    Google Scholar 

  • Maeda S, Ohki A (1998) Bioaccumulation and biotransformation of arsenic, antimony and bismuth compounds by freshwater algae. In: Wong YS, Tam NFY (eds) Wastewater treatment with algae, 2nd edn. Springer, Berlin, pp 73–91

    Chapter  Google Scholar 

  • Maeda S, Kusadome K, Arima H, Ohki A, Naka K (1992a) Biomethylation of arsenic and its excretion by the alga Chlorella vulgaris. Appl Organomet Chem 6:407–413

    Article  CAS  Google Scholar 

  • Maeda S, Kusadome K, Arima H, Ohki A, Naka K (1992b) Uptake and excretion of total inorganic arsenic by the freshwater alga Chlorella vulgaris. Appl Organomet Chem 6:399–405

    Article  CAS  Google Scholar 

  • Marchal M, Briandet R, Halter D, Koechler S, Dubow MS, Lett M-C, Bertin PN (2011) Subinhibitory arsenite concentrations lead to population dispersal in Thiomonas sp. PLoS One 6:e23181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meharg AA (1994) Integrated tolerance mechanisms-constitutive and adaptive plant- responses to elevated metal concentrations in the environment. Plant Cell Environ 17:989–993

    Article  CAS  Google Scholar 

  • Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Villada A, Cambell RCJ, Sun G, Zhu Y-G, Feldmann J, Raab A, Zhao F-J, Islam R, Hossain S, Yanai J (2009) Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol 43:1612–1617

    Article  CAS  PubMed  Google Scholar 

  • Michalke K, Hansel R (2004) Biovolatilisation of metal(loid)s by microorganisms. In: Hiran AV, Emons H (eds) Organic metal and metalloid species in the environment. Springer, Berlin, pp 137–50

    Chapter  Google Scholar 

  • Mondal D, Polya DA (2008a) Rice is a major exposure route for arsenic in Chakdah block, Nadia district, West Bengal, India: a probabilistic risk assessment. Appl Geochem 23:2987–2998

    Article  CAS  Google Scholar 

  • Mondal D, Polya DA (2008b) Rice is a major exposure route for arsenic in Chakdaha block, Nadia district, West Bengal, India: a probabilistic risk assessment. Appl Geochem 23:2986–2999

    Google Scholar 

  • Morelli E, Mascherpa MC, Scarano G (2005) Biosynthesis of phytochelatins and arsenic accumulation in the marine microalga Phaeodactylum tricornutum in response to arsenate exposure. Biometals 18:587–593

    Article  CAS  PubMed  Google Scholar 

  • Muhling M, Woolven-Allen J, Murrell JC, Joint I (2008) Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME J 2:379–392

    Article  CAS  PubMed  Google Scholar 

  • Muller D, Médigue C, Koechler S, Barbe V, Barakat M, Talla E (2007) A tale of two oxidation states: bacterial colonization of arsenic-rich environments. PLoS Genet 3:e53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nath B, Maity JP, Jean J-S, Birch G, Kar S, Yang H-J, Lee M-K, Hazra R, Chatterjee D (2011) Geochemical characterization of the arsenic-affected alluvial aquifers of the Bengal Delta (West Bengal and Bangladesh) and Chianan Plains (SW Taiwan): implications for human health. Appl Geochem 26: 705e713.

  • Newbigging AM, Paliwoda RE, Le XC (2015) Rice: reducing arsenic content by controlling water irrigation. J Environ Sci 30:129–131

    Article  Google Scholar 

  • Nickson RT, McArthur JM, Ravenscroft P, Burgess WG, Ahmed KM (2000) Mechanism of arsenic poisoning of ground water in Bangladesh and West Bengal. Appl Geochem 15:403–413

    Article  CAS  Google Scholar 

  • Nordstrom DK (2002) Worldwide occurrences of arsenic in ground water. Science 296:2143–2145

    Article  CAS  PubMed  Google Scholar 

  • Ohno K, Yanase T, Matsuo Y, Kimura T, Rahman MH, Magara Y, Matsui Y (2007) Arsenic intake via water and food by a population living in an arsenic-affected area of Bangladesh. Sci Total Environ 381:68–76

    Article  CAS  PubMed  Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944

    Article  CAS  PubMed  Google Scholar 

  • Páez-Espino D, Tamames J, de Lorenzo V, Cánovas D (2009) Microbial responses to environmental arsenic. Biometals 22:117–130

    Article  CAS  PubMed  Google Scholar 

  • Pawlik-Skowrónska B, Pirszel J, Kalinowska R, Skowrónski T (2004) Arsenic availability, toxicity and direct role of GSH and phytochelatins in As detoxification in the green alga Stichococcus bacillaris. Aquat Toxicol 70:201–212

    Article  CAS  PubMed  Google Scholar 

  • Peter P, Sarma AP, Hasan MDA, Murthy SDS (2010) Studies on the impact of nitrogen starvation on the photosynthetic pigments through spectral properties of the cyanobacterium, Spirulina platensis: identification of target phycobiliprotein under nitrogen chlorosis. Bot Res Int 3:30–34

    CAS  Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci U S A 103:2075–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin J, Lehr CR, Yuan CG, Le XC, McDermott TR, Rosen BP (2009) Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc Natl Acad Sci U S A 106:5213–5217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahaman S, Sinha AC, Pati R, Mukhopadhyay D (2013) Arsenic contamination: a potential hazard to the affected areas of West Bengal. Environ Geochem Health 35:119–132

    Article  CAS  PubMed  Google Scholar 

  • Rahman MA, Hassler C (2014) Is arsenic biotransformation a detoxification mechanism for microorganisms? Aquat Toxicol 146:212–219

    Article  CAS  PubMed  Google Scholar 

  • Rahman MM, Choudhury UK, Mukherjee SC, Mondal BK, Paul K, Lodh D, Biswas BK, Chanda CR, Basu GK, Saha KC, Roy S, Das R, Palit SK, Quamruzzaman Q, Chakraborti D (2001) Chronic arsenic toxicity in Bangladesh and West Bengal India. J Toxicol Clin Toxicol 39:683–700

    Article  CAS  PubMed  Google Scholar 

  • Rossmann TG (2003) Mechanism of arsenic carcinogenesis: an integrated approach. Mutat Res 533:37–65

  • Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92

  • Sánchez-Riego AM, López-Maury L, Florencio FJ (2014) Genomic responses to arsenic in the cyanobacterium Synechocystis sp. PCC 6803. PLoS One 9:e96826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh A, Vudikaria LQ, Kurano N, Miyachi S (2005) Evaluation of the sensitivity of marine microalgal strains to the heavy metals, Cu, As, Sb, Pb and Cd. Environ Int 31:713–722

    Article  CAS  PubMed  Google Scholar 

  • Saunders JK, Rocap G (2015) Arsenic detoxification strategies vary with environmental phosphate concentrations in global Prochlorococcus populations. ISME J. doi:10.1038/ismej.2015.85

  • Sauer J, Schreiber U, Schmid R, Vo¨ lker U, & Forchhammer K (2001) Nitrogen starvationinduced chlorosis in Synechococcus PCC 7942. Low-level photosynthesis as a mechanism of long-term survival. Plant Physiol 126, 233–243

  • Schulze K, López DA, Tillich UM, Frohme M (2011) A simple viability analysis for unicellular cyanobacteria using a new autofluorescence assay, automated microscopy, and ImageJ. BMC Biotechnol 11:118–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seyfferth AL, Webb SM, Andrews JC, Fendorf S (2010) Arsenic localization, speciation, and co-occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings. Environ Sci Technol 44:8108–8113

    Article  CAS  PubMed  Google Scholar 

  • Shaheen R, Mahmud R, Sen J (2007) A study on arsenic decontaminating cyanobacteria of an arsenic affected soil. J Soil Nature 1:23–29

    Google Scholar 

  • Singh N, Asthana RK, Kayastha AM, Pandey S, Chaudhary AK, Singh SP (1999) Thiol and exopolysaccharide production in a cyanobacterium under heavy metal stress. Process Biochem 35:63–68

    Article  CAS  Google Scholar 

  • Sinha RP, Sinha JP, Gröniger A and Häder D-P (2002) Polychromatic action spectrum for the induction of a mycosporine-like amino acid in a rice-field cyanobacterium, Anabaena sp., J. Photochem. Photobiol., B 66:47–53

  • Slyemi D, Bonnefoy V (2012) How prokaryotes deal with arsenic. Environ Microbiol Rep 4:571–586

    CAS  PubMed  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) The review of source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Sneller FEC, Van Heerwaarden LM, Kraaijeveld-Smit FJL, Ten Bookum WM, Koevoets PLM, Schat H, Verkleij JAC (1999) Toxicity of arsenate in Silene vulgaris, accumulation and degradation of arsenate-induced phytochelatins. New Phytol 144:223–232

    Article  CAS  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriol Rev 35:171–205

  • Stewart WDP (1980). Some aspects of structure and function in N2-hing cyanobacteria. Annual Review of Microbiology 34:497–536

  • Stolz JF (2011) Microbial metal and mettaloid metabolism: advances and applications, 1st edn. ASM Press, Washington DC

    Google Scholar 

  • Subbaiah BV, Asija GC (1956) A rapid procedure for determination of available nitrogen in soils. Curr Sci 25:259–260

    Google Scholar 

  • Tamaki S, Frankenberger WT Jr (1992) Environmental biochemistry of arsenic. Rev Environ Contam Toxicol 124:79–110

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel T (1988) Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis. J Bacteriol 170:1143–1147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turner GL, Gibson AH (1980) Measurement of nitrogen fixation by indirect means. In: Bergerson FJ (ed) Methods for evaluating biological nitrogen fixation. Wiley, UK, pp 111–138

    Google Scholar 

  • Vaughan DJ (2006) Arsenic. Elements 2:71–75

    Article  CAS  Google Scholar 

  • Venkataraman GS (1993) Blue-green algae (cyanobacteria). In: Tata Wadhwani AM, Mehdi MS (eds) Biological nitrogen fixation. Indian Council of Agric Res, New Delhi, pp 45–76

    Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degrjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–36

    Article  CAS  Google Scholar 

  • Wallsgrove RM, Keys AJ, Lea PJ, Miflin BJ (1983) Photosynthesis, photorespiration and nitrogen metabolism. Plant Cell Environ 6:301–309

    CAS  Google Scholar 

  • Wang NX, Li Y, Deng XH, Miao AJ, Ji R, Yang LY (2013) Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes. Water Res 47:2497–2506

    Article  CAS  PubMed  Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality. Fourth Edition. World Health Organization, Geneva, Switzerland Available: http:// http://www.who.int/water_sanitation_health/dwq/guidelines/en

  • Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, Feldmann J, Meharg AA (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated rice grain levels compared to wheat and barley. Environ Sci Technol 41:6854–6859

    Article  CAS  PubMed  Google Scholar 

  • Yin XX, Chen J, Qin J, Sun GX, Rosen BP, Zhu YG (2011) Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol 156:1631–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin X, Wang LH, Bai R, Huang H, Sun G (2012) Accumulation and transformation of arsenic in the blue-green alga Synechocysis sp. PCC6803. Water Air Soil Pollut 223:1183–1190

    Article  CAS  Google Scholar 

  • Zhang SY, Zhao FJ, Guo XS, Su JQ, Yang XR, Li H, Zhu YG (2015) Diversity and abundance of arsenic biotransformation genes in paddy soils from Southern China. Environ Sci Technol 49:4138–4146

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Zhu YG, Meharg AA (2013) Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms. Environ Sci Technol 47:3957–3966

    Article  CAS  PubMed  Google Scholar 

  • Zheng MZ, Li G, Sun GX, Shim H, Cai C (2013) Differential toxicity and accumulation of inorganic and methylated arsenic in rice. Plant Soil 365:227–238

    Article  CAS  Google Scholar 

  • Zhu YG, Williams PN, Meharg AA (2008) Exposure to inorganic arsenic from rice: a global health issue? Environ Pollut 154:169–171

    Article  CAS  PubMed  Google Scholar 

  • Zutshi S, Bano F, Ningthoujam M, Habib K, Fatma T (2014) Metabolic adaptations to arsenic-induced oxidative stress in Hapalosiphon fontinalis-339. IJIRSET 3:9386–9394

    Google Scholar 

Download references

Acknowledgments

Manojit Debnath from PostGraduate Department of Botany, Hooghly Mohsin College, Chinsurah, thankfully acknowledges IISER Kolkata for the provision of IISERK Postdoctoral Fellowship to carry out this research. The FESEM and CLSM as part of Central Imaging Facility of IISERK are acknowledged. This work is supported by FIRE grant of IISERK awarded to Punyasloke Bhadury.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Punyasloke Bhadury.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Blastn result of 16S rRNA sequences representing the five cyanobacterial isolates compared with published sequences of cultured cyanobacteria available in GenBank/EMBL/DDBJ databases (DOCX 19.9 kb)

Fig. S1

Arsenic speciation of five cyanobacterial isolates exposed at NOEC in vitro evaluated in biomass and respective growth medium (n=3) (PDF 106 kb)

Fig. S2

Arsenic speciation of five cyanobacterial isolates exposed at SEC50 in vitro evaluated in biomass and respective growth medium (n=3) (PDF 106 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, M., Bhadury, P. Adaptive responses and arsenic transformation potential of diazotrophic Cyanobacteria isolated from rice fields of arsenic affected Bengal Delta Plain. J Appl Phycol 28, 2777–2792 (2016). https://doi.org/10.1007/s10811-016-0820-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0820-9

Keywords

Navigation