Skip to main content

Advertisement

Log in

Magnetophoretic harvesting of freshwater microalgae using polypyrrole/Fe3O4 nanocomposite and its reusability

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

A magnetophoretic harvesting agent, a polypyrrole/Fe3O4 magnetic nanocomposite, is proposed as a cost and energy efficient alternative to recover biomass of the microalgae Botryococcus braunii, Chlorella protothecoides, and Chlorella vulgaris from their culture media. The maximal recovery efficiency reached almost 99 % for B. braunii, 92.4 % for C. protothecoides, and 90.8 % for C. vulgaris. The maximum adsorption capacity (Q 0) of the magnetic nanocomposite for B. braunii (63.49 mg dry biomass mg−1 PPy/Fe3O4) was higher than that for C. protothecoides (43.91 mg dry biomass mg−1 PPy/Fe3O4) and C. vulgaris (39.98 mg dry biomass mg−1 PPy/Fe3O4). The highest harvesting efficiency for all the studied microalgae were at pH 10.0, and measurement of zeta-potential confirmed that the flocculation was induced by charge neutralization. This study showed that polypyrrole/Fe3O4 can be a promising flocculant due to its high efficacy, low dose requirements, short settling time, its integrity with cells, and with great potential for saving energy because of its recyclability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ansari R (2006) Polypyrrole conducting electroactive polymers: synthesis and stability studies. E-J Chem 3:186–201

  • Ansari R, Fahim NK, Dellavar AF (2009) Removal of thiocyanate ions from aqueous solutions using polypyrrole and polyaniline conducting electroactive polymers. J Iran Chem Res 2:163–171

    Google Scholar 

  • Arcila-Velez MR, Roberts ME (2014) Redox solute doped polypyrrole for high-charge capacity polymer electrodes. Chem Mater 26:1601–1607

    Article  CAS  Google Scholar 

  • Bai R, Zhang X (2001) Polypyrrole-coated granules for humic acid removal. J Colloid Interface Sci 243:52–60

    Article  CAS  Google Scholar 

  • Benemann JR (1997) Feasibility analysis of photobiological hydrogen production. Int J Hydrog Energy 22:979–987

    Article  CAS  Google Scholar 

  • Bhaumik M, Maity A, Srinivasu VV, Onyango MS (2011) Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. J Hazard Mater 190:381–390

    Article  CAS  PubMed  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Cassignol C, Olivier P, Ricard A (1998) Influence of the dopant on the polypyrrole moisture content: effects on conductivity and thermal stability. J Appl Polym Sci 70:1567–1577

    Article  CAS  Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    Article  CAS  PubMed  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105

    Article  CAS  PubMed  Google Scholar 

  • Deng J, Peng Y, He C, Long X, Li P, Chan ASC (2003) Magnetic and conducting Fe3O4-polypyrrole nanoparticles with core–shell structure Polym. Int 52:1182–1187

    CAS  Google Scholar 

  • Dunlop DJ, Ozdemir O (1997) Rock magnetism: fundamentals and frontiers. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Freundlich H (1907) Ueber die adsorption in Loesungen. Z Physiol Chem 57:385–470

    CAS  Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14:1037–47

    Article  CAS  Google Scholar 

  • Hena S (2010) Removal of chromium hexavalent ion from aqueous solutions using biopolymer chitosan coated with poly 3-methyl thiophene polymer. J Hazard Mater 181:474–479

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Lee SY, Na JG, Jeon SG, Praveenkumar R, Kim DM, Chang WS, Oh YK (2013) Magnetophoretic harvesting of oleaginous Chlorella sp. by using biocompatible chitosan/magnetic nanoparticle composites. Bioresour Technol 149:575–578

    Article  CAS  PubMed  Google Scholar 

  • Lim JK, Chieh DCJ, Jalak SA, Toh PY, Yasin NHM, Ng BW, Ahmad AL (2012) Rapid magnetophoretic separation of microalgae. Small 8:1683–1692

    Article  CAS  PubMed  Google Scholar 

  • Nassar NN (2010) Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents. J Hazard Mater 184:538–546

    Article  CAS  PubMed  Google Scholar 

  • Oh HM, Lee SJ, Park MH, Kim HS, Kim HC, Yoon JH, Kwon GS, Yoon BD (2001) Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnol Lett 15:1229–1234

    Article  Google Scholar 

  • Omastova M, Pavlinec J, Pionteck J, Simon F (1997) Synthesis, electrical properties and stability of polypyrrole-containing conducting polymer composites. Polym Int 43:109–116

    Article  CAS  Google Scholar 

  • Papazi A, Makridis P, Divanach P (2010) Harvesting Chlorella minutissima using cell coagulants. J Appl Phycol 22:349–355

    Article  CAS  Google Scholar 

  • Park JK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42

    Article  CAS  PubMed  Google Scholar 

  • Pragya N, Pandey KK, Sahoo PK (2013) A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew Sust Energ Rev 24:159–171

    Article  CAS  Google Scholar 

  • Prochazkova G, Safarik I, Branyik T (2013) Harvesting microalgae with microwave synthesized magnetic microparticles. Bioresour Technol 130:472–477

    Article  CAS  PubMed  Google Scholar 

  • Ras M, Lardon L, Bruno S, Bernet N, Steyer JP (2011) Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour Technol 102:200–6

    Article  CAS  PubMed  Google Scholar 

  • Rashid N, Rehman S, Hana JI (2013) Rapid harvesting of freshwater microalgae using chitosan. Process Biochem 48:1107–1110

    Article  CAS  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

  • Salim S, Bosma R, Vermuë MH, Wijffels RH (2011) Harvesting of microalgae by bio-flocculation. J Appl Phycol 23:849–855

    Article  PubMed  PubMed Central  Google Scholar 

  • Seo JY, Lee K, Lee SY, Jeon SG, Na JG, OhYK PSB (2014) Effect of barium ferrite particle size on detachment efficiency in magnetophoretic harvesting of oleaginous Chlorella sp. Bioresour Technol 152:562–566

    Article  CAS  PubMed  Google Scholar 

  • Small AC, Johnston JH (2009) Novel hybrid materials of magnetic nanoparticles and cellulose fibers. J Colloid Interface Sci 331:122–126

    Article  CAS  PubMed  Google Scholar 

  • Uduman N, Qi Y, Danquah MK, Hoadley AF (2010) Marine microalgae flocculation and focussed beam reflectance measurement. Chem Eng J 162:935–40

    Article  CAS  Google Scholar 

  • Van-Beilen JB (2010) Why microalgal biofuels won’t save the internal combustion engine. Biofuels Bioprod Biorefin 4:41–52

    Article  CAS  Google Scholar 

  • Xu L, Wang F, Li HZ, Hu ZM, Guo C, Liu CZ (2010) Development of an efficient electroflocculation technology integrated with dispersed-air flotation for harvesting microalgae. J Chem Technol Biotechnol 85:1504–1507

    CAS  Google Scholar 

  • Xu L, Guo C, Wang F, Zheng S, Liu CZ (2011) A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresour Technol 102:10047–10051

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Bai R (2003) Surface electric properties of polypyrrole in aqueous solutions. Langmuir 19:10703–10709

    Article  CAS  Google Scholar 

  • Zheng H, Gao Z, Yin J, Tang X, Ji X, Huang H (2012) Harvesting of microalgae by flocculation with poly (γ-glutamic acid). Bioresour Technol 112:212–220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the University Sains Malaysia short term grant number 304/PTEKIND/6311074 and FRGS 203/PTEKIND/6711465. Authors also thank Mr. Azmaizan and Mrs. Najmah for their technical support in instrumental analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hena.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 609 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hena, S., Fatihah, N., Tabassum, S. et al. Magnetophoretic harvesting of freshwater microalgae using polypyrrole/Fe3O4 nanocomposite and its reusability. J Appl Phycol 28, 1597–1609 (2016). https://doi.org/10.1007/s10811-015-0719-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0719-x

Keywords

Navigation