Skip to main content

Advertisement

Log in

Cyanobacteria and Chlorophyta in situ magnetic harvesting by goethite/magnetite nanoparticles

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Separating microalgal cells from the aquatic environment is a crucial step for minimizing their adverse impacts or utilizing microalgal biomass. In this study, low-cost facile goethite/magnetite nanoparticles (GMNs) were prepared by the co-precipitation method in one step and employed for comparative harvesting of Microcystis aeruginosa (Cyanobacteria) and Stigeoclonium sp. (Chlorophyta). The highest harvesting efficiency for M. aeruginosa and Stigeoclonium sp. reached 99.0% (0.83 g GMNs g−1 dry biomass) and 98.2% (0.46 g GMNs g−1 dry biomass), respectively. To lower the microalgae harvesting cost, GMNs were recycled 5 times by coupling ultrasonic hexane extraction and alkali washing. Notably, the harvesting performance of GMNs was boosted by the ultrasonic reactivation, and goethite in GMNs matrix was found to be a pivotal contributor to the enhancement. Moreover, extended Derjaguin-Landau-Verwey-Overbeek (EDLVO) theory was applied to providing deep insight into GMNs-microalgae interfacial interactions and different harvesting capabilities of GMNs toward M. aeruginosa and Stigeoclonium sp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data presented in this study are available from the corresponding author upon reasonable request.

References

  • Almomani F (2020) Algal cells harvesting using cost-effective magnetic nano-particles. Sci Total Environ 720:137621

    Article  CAS  PubMed  Google Scholar 

  • Almomani F (2020) Kinetic modeling of microalgae growth and CO2 bio-fixation using central composite design statistical approach. Sci Total Environ 720:137594

    Article  CAS  PubMed  Google Scholar 

  • Barros AC, Goncalves AL, Simoes M (2019) Microalgal/cyanobacterial biofilm formation on selected surfaces: the effects of surface physicochemical properties and culture media composition. J Appl Phycol 31:375–387

    Article  CAS  Google Scholar 

  • Biggs S, Habgood M, Jameson GJ, Yan YD (2000) Aggregate structures formed via a bridging flocculation mechanism. Chem Eng J 80:13–22

    Article  CAS  Google Scholar 

  • Blakey BC, James DF (2003) The viscous behaviour and structure of aqueous suspensions of goethite. Colloid Surface A 231:19–30

    Article  CAS  Google Scholar 

  • Boily JF, Lutzenkirchen J, Balmes O, Beattie J, Sjoberg S (2001) Modeling proton binding at the goethite (α-FeOOH)-water interface. Colloid Surface A 179:11–27

    Article  CAS  Google Scholar 

  • Borowitzka MA, Moheimani NR (2013) Sustainable biofuels from algae. Mitig Adapt Strat Global Change 18:13–25

    Article  Google Scholar 

  • Borowitzka MA, Vonshak A (2017) Scaling up microalgal cultures to commercial scale. Eur J Phycol 52:407–418

    Article  CAS  Google Scholar 

  • Bos R, van der Mei HC, Busscher HJ (1999) Physico-chemistry of initial microbial adhesive interactions - its mechanisms and methods for study. Fems Microbiol Rev 23:179–230

    Article  CAS  PubMed  Google Scholar 

  • Brant JA, Childress AE (2002) Assessing short-range membrane-colloid interactions using surface energetics. J Membr Sci 203:257–273

    Article  CAS  Google Scholar 

  • Buczek SB, Cope WG, McLaughlin RA, Kwak TJ (2017) Acute toxicity of polyacrylamide flocculants to early life stages of freshwater mussels. Environ Toxicol Chem 36:2715–2721

    Article  CAS  PubMed  Google Scholar 

  • Cerff M, Morweiser M, Dillschneider R, Michel A, Menzel K, Posten C (2012) Harvesting fresh water and marine algae by magnetic separation: Screening of separation parameters and high gradient magnetic filtration. Bioresour Technol 118:289–295

    Article  CAS  PubMed  Google Scholar 

  • Dresco PA, Zaitsev VS, Gambino RJ, Chu B (1999) Preparation and properties of magnetite and polymer magnetite nanoparticles. Langmuir 15:1945–1951

    Article  CAS  Google Scholar 

  • Favela-Camacho SE, Samaniego-Benitez EJ, Godinez-Garcia A, Aviles-Arellano LM, Perez-Robles JF (2019) How to decrease the agglomeration of magnetite nanoparticles and increase their stability using surface properties. Colloid Surface A 574:29–35

    Article  CAS  Google Scholar 

  • Fu Y, Hu F, Li H, Cui L, Qian G, Zhang D, Xu Y (2021) Application and mechanisms of microalgae harvesting by magnetic nanoparticles (MNPs). Sep Purif Technol 265:118519

    Article  CAS  Google Scholar 

  • Ge SJ, Agbakpe M, Wu ZY, Kuang LY, Zhang W, Wang XQ (2015) Influences of surface coating, UV irradiation and magnetic field on the algae removal using magnetite nanoparticles. Environ Sci Technol 49:1190–1196

    Article  CAS  PubMed  Google Scholar 

  • Gimenez J, Martinez M, de Pablo J, Rovira M, Duro L (2007) Arsenic sorption onto natural hematite, magnetite, and goethite. J Hazard Mater 141:575–580

    Article  CAS  PubMed  Google Scholar 

  • Gnanaprakash G, Mahadevan S, Jayakumar T, Kalyanasundaram P, Philip J, Raj B (2007) Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles. Mater Chem Phys 103:168–175

    Article  CAS  Google Scholar 

  • Guo XT, Dong H, Yang C, Zhang Q, Liao CJ, Zha FG, Gao LM (2016) Application of goethite modified biochar for tylosin removal from aqueous solution. Colloid Surface A 502:81–88

    Article  CAS  Google Scholar 

  • Hadjoudja S, Deluchat V, Baudu M (2010) Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. J Colloid Interf Sci 342:293–299

    Article  CAS  Google Scholar 

  • Hena S, Fatihah N, Tabassum S, Lalung J, Jing SY (2016) Magnetophoretic harvesting of freshwater microalgae using polypyrrole/Fe3O4 nanocomposite and its reusability. J Appl Phycol 28:1597–1609

    Article  CAS  Google Scholar 

  • Hitzfeld BC, Hoger SJ, Dietrich DR (2000) Cyanobacterial toxins: removal during drinking water treatment, and human risk assessment. Environ Health Persp 108:113–122

    CAS  Google Scholar 

  • Lee J, Lee S, Jiang XW (2017) Cyanobacterial toxins in freshwater and food: Important Sources of exposure to humans. Annu Rev Food Sci T 8:281–304

    Article  CAS  Google Scholar 

  • Li YG, Gao HS, Li WL, Xing JM, Liu HZ (2009) In situ magnetic separation and immobilization of dibenzothiophene-desulfurizing bacteria. Bioresour Technol 100:5092–5096

    Article  CAS  PubMed  Google Scholar 

  • Liu PR, Zhang HL, Wang T, Yang WL, Hong Y, Hou YL (2016) Functional graphene-based magnetic nanocomposites as magnetic flocculant for efficient harvesting of oleaginous microalgae. Algal Res 19:86–95

    Article  Google Scholar 

  • Liu PR, Wang T, Yang ZY, Hong Y, Xie X, Hou YL (2020) Effects of Fe3O4 nanoparticle fabrication and surface modification on Chlorella sp. harvesting efficiency. Sci Total Environ 704:135286

    Article  CAS  PubMed  Google Scholar 

  • Markeb AA, Llimos-Turet J, Ferrer I, Blanquez P, Alonso A, Sanchez A, Moral-Vico J, Font X (2019) The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater. Water Res 159:490–500

    Article  Google Scholar 

  • Naha PC, Byrne HJ (2013) Generation of intracellular reactive oxygen species and genotoxicity effect to exposure of nanosized polyamidoamine (PAMAM) dendrimers in PLHC-1 cells in vitro. Aquat Toxicol 132:61–72

    Article  PubMed  Google Scholar 

  • Ndikubwimana T, Zeng XH, Murwanashyaka T, Manirafasha E, He N, Shao WY, Lu YH (2016) Harvesting of freshwater microalgae with microbial bioflocculant: a pilot-scale study. Biotechnol Biofuels 9:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozkan A, Berberoglu H (2013) Physico-chemical surface properties of microalgae. Colloid Surface B 112:287–293

    Article  CAS  Google Scholar 

  • Prochazkova G, Podolova N, Safarik I, Zachleder V, Branyik T (2013) Physicochemical approach to freshwater microalgae harvesting with magnetic particles. Colloid Surface B 112:213–218

    Article  CAS  Google Scholar 

  • Qi J, Lan HC, Liu RP, Liu HJ, Qu JH (2020) Efficient Microcystis aeruginosa removal by moderate photocatalysis-enhanced coagulation with magnetic Zn-doped Fe3O4 particles. Water Res 171:115448

    Article  CAS  PubMed  Google Scholar 

  • Racharaks R, Ge XM, Li YB (2015) Cultivation of marine microalgae using shale gas flowback water and anaerobic digestion effluent as the cultivation medium. Bioresour Technol 191:146–156

    Article  CAS  PubMed  Google Scholar 

  • Sharma PK, Rao KH (2003) Adhesion of Paenibacillus polymyxa on chalcopyrite and pyrite: surface thermodynamics and extended DLVO theory. Colloid Surface B 29:21–38

    Article  CAS  Google Scholar 

  • Shurair M, Almomani F, Bhosale R, Khraisheh M, Qiblawey H (2019) Harvesting of intact microalgae in single and sequential conditioning steps by chemical and biological based - flocculants: effect on harvesting efficiency, water recovery and algal cell morphology. Bioresour Technol 281:250–259

    Article  CAS  PubMed  Google Scholar 

  • Sirmerova M, Prochazkova G, Siristova L, Kolska Z, Branyik T (2013) Adhesion of Chlorella vulgaris to solid surfaces, as mediated by physicochemical interactions. J Appl Phycol 25:1687–1695

    Article  CAS  Google Scholar 

  • van Oss CJ (1995) Hydrophobicity of biosurfaces — origin, quantitative determination and interaction energies. Colloid Surface B 5:91–110

    Article  Google Scholar 

  • Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31:233–239

    Article  CAS  PubMed  Google Scholar 

  • Vergini S, Aravantinou AF, Manariotis ID (2016) Harvesting of freshwater and marine microalgae by common flocculants and magnetic microparticles. J Appl Phycol 28:1041–1049

    Article  CAS  Google Scholar 

  • Wang SK, Wang F, Stiles AR, Guo C, Liu CZ (2014) Botryococcus braunii cells: ultrasound-intensified outdoor cultivation integrated with in situ magnetic separation. Bioresour Technol 167:376–382

    Article  CAS  PubMed  Google Scholar 

  • Wang SK, Guo C, Wu W, Sui KY, Liu CZ (2019) Effects of incident light intensity and light path length on cell growth and oil accumulation in Botryococcus braunii (Chlorophyta). Eng Life Sci 19:104–111

    Article  CAS  PubMed  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    Article  CAS  Google Scholar 

  • Xu L, Guo C, Wang F, Zheng S, Liu CZ (2011) A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresour Technol 102:10047–10051

    Article  CAS  PubMed  Google Scholar 

  • Xu YF, Wang X, Fu Y, Hu FL, Qian GR, Liu Q, Sun Y (2020) Interaction energy and detachment of magnetic nanoparticles-algae. Environ Technol 41:2618–2624

    Article  CAS  PubMed  Google Scholar 

  • Yu CL, Bahashi J, Bi EP (2019) Mechanisms and quantification of adsorption of three anti-inflammatory pharmaceuticals onto goethite with/without surface-bound organic acids. Chemosphere 222:593–602

    Article  CAS  PubMed  Google Scholar 

  • Zhang CD, Li W, Shi YH, Li YG, Huang JK, Li HX (2016) A new technology of CO2 supplementary for microalgae cultivation on large scale - a spraying absorption tower coupled with an outdoor open runway pond. Bioresour Technol 209:351–359

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (2017YFC1601802), the Science and Technology Supporting Program of Guizhou ([2021]464), and the State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control (2010DS700124-KF1708).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfeng Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Hu, F. & Xu, Y. Cyanobacteria and Chlorophyta in situ magnetic harvesting by goethite/magnetite nanoparticles. J Appl Phycol 34, 857–869 (2022). https://doi.org/10.1007/s10811-021-02621-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02621-x

Keywords

Navigation