Skip to main content
Log in

Experimental evidence for the role of heterotrophic bacteria in the formation of Microcystis colonies

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microcystis, a genus of cyanobacteria that is dominant in eutrophic lakes, occurs mainly as colonial morphs under natural conditions but as single cells in laboratory cultures. Recent studies have suggested that Microcystis–bacteria interactions significantly influence Microcystis morphology, but the underlying mechanism remains unclear. In this study, a total of 48 strains of heterotrophic bacteria were purified from Microcystis mucilage. Five bacteria, Aeromonas veronii, Enterobacter aerogenes, Exiguobacterium acetylicum, Bacillus cereus and Shewanella putrefaciens, can induce unicellular Microcystis to form colonies. Heterotrophic bacteria stimulated Microcystis growth and induced the production of extracellular polymeric substances in coculture treatments. Extracellular polymeric substances, such as extracellular polysaccharides (EPS), were responsible for the mucilage formation in colonial Microcystis. We analysed extracellular metabolic compounds produced by Microcystis aeruginosa and Microcystis wesenbergii using gas chromatography mass spectrometry. Filtrate extracts from coculture treatments indicated that some compounds, such as 2-dodecen-1-yl(-) succinic anhydride and benzoic acid, 2,3-bis[(trimethylsilyl)oxy]-, trimethylsilyl ester, might play a significant role in colonial M. aeruginosa or M. wesenbergii formation. Our data suggested that the interaction of Microcystis and heterotrophic bacteria was crucial for the formation of Microcystis colony and outbreak of Microcystis blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams JH (1978) Synergistic combinations of hydrated potassium borate, antiwear agents, and organic sulfide antioxidants. US Patent 4089790A

  • Armstrong E, Yan L, Boyd KG, Wright PC, Burgess JG (2001) The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461:37–40

    Article  Google Scholar 

  • Bell WH (1984) Bacterial adaptation to low-nutrient conditions as studied with algal extracellular products. Microb Ecol 10:217–230

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bratbak G, Thingstad TF (1985) Phytoplankton-bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalism. Mar Ecol Prog Ser 25:23–30

    Article  Google Scholar 

  • Brunberg AK (1999) Contribution of bacteria in the mucilage of Microcystis spp. (Cyanobacteria) to benthic and pelagic bacterial production in a hypereutrophic lake. FEMS Microbiol Ecol 29:13–22

    Article  CAS  Google Scholar 

  • Burkert PH, Drakare S, Blomqvist P (2001) Effects of the mixotrophic flagellate Ochromonas sp. on colony formation in Microcystis aeruginosa. Aquat Ecol 35:11–17

    Article  Google Scholar 

  • Burton K (1956) A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J 62:315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Peng L, Wan N, Song L (2009) Mechanism study on the frequent variations of cell-bound microcystins in cyanobacterial blooms in Lake Taihu: implications for water quality monitoring and assessments. Chemosphere 77:1585–1593

    Article  CAS  PubMed  Google Scholar 

  • Doucette GJ (1995) Interactions between bacteria and harmful algae: a review. Nat Toxins 3:65–74

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Dziallas C, Grossart HP (2011) Temperature and biotic factors influence bacterial communities associated with the cyanobacterium Microcystis sp. Environ Microbiol 13:1632–1641

    Article  PubMed  Google Scholar 

  • Forni C, Telo' FR, Caiola MG (1997) Comparative analysis of the polysaccharides produced by different species of Microcystis (Chroococcales, Cyanophyta). Phycologia 36:181–185

    Article  Google Scholar 

  • Giroldo D, Ortolano PI, Vieira AA (2007) Bacteria–algae association in batch cultures of phytoplankton from a tropical reservoir: the significance of algal carbohydrates. Freshw Biol 52:1281–1289

    Article  CAS  Google Scholar 

  • Imai A, Fukushima T, Matsushige K (1999) Effects of iron limitation and aquatic humic substances on the growth of Microcystis aeruginosa. Can J Fish Aquat Sci 56:1929–1937

    Article  CAS  Google Scholar 

  • Ishikawa K, Walker R, Tsujimura S, Nakahara H, Kumagai M (2004) Estimation of Microcystis colony size in developing water blooms via image analysis. J Jpn Soc Water Environ 4:69–72

    Article  Google Scholar 

  • Ivanovic J, Misic D, Zizovic I, Ristic M (2012) In vitro control of multiplication of some food-associated bacteria by thyme, rosemary and sage isolates. Food Control 25:110–116

    Article  Google Scholar 

  • Jancula D, Marsalek B (2011) Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms. Chemosphere 85:1415–1422

    Article  CAS  PubMed  Google Scholar 

  • Joung SH, Kim CJ, Ahn CY, Jang KY, Boo SM, Oh HM (2006) Simple method for a cell count of the colonial cyanobacterium, Microcystis sp. J Microbiol 44:562–565

    PubMed  Google Scholar 

  • Kessel M, Eloff JN (1975) The ultrastructure and development of the colonial sheath of Microcystis marginata. Arch Microbiol 106:209–214

    Article  CAS  PubMed  Google Scholar 

  • Klock JH, Wieland A, Seifert R, Michaelis W (2007) Extracellular polymeric substances (EPS) from cyanobacterial mats: characterisation and isolation method optimisation. Mar Biol 152:1077–1085

    Article  CAS  Google Scholar 

  • Kolattukudy P (1968) Tests whether a head to head condensation mechanism occurs in the biosynthesis of n-hentriacontane, the paraffin of spinach and pea leaves. Plant Physiol 43:1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurmayer R, Christiansen G, Chorus I (2003) The abundance of microcystin-producing genotypes correlates positively with colony size in Microcystis sp. and determines its microcystin net production in Lake Wannsee. Appl Environ Microbiol 69:787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JA, Kontopoulou M, Parent JS (2005) Synthesis and characterization of polyethylene-based ionomer nanocomposites. Polymer 46:5040–5049

    Article  CAS  Google Scholar 

  • Lin LH, Chen KM (2006) Preparation and surface activity of gelatin derivative surfactants. Colloids Surf A 272:8–14

    Article  CAS  Google Scholar 

  • Liu X, Dong M, Chen X, Jiang M, Lv X, Yan G (2007) Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chem 105:548–554

    Article  CAS  Google Scholar 

  • Liu YM, Chen MJ, Wang MH, Jia RB, Li L (2013) Inhibition of Microcystis aeruginosa by the extracellular substances from an Aeromonas sp. J Microbiol Biotechnol 23:1304–1307

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Brookes JD, Qin B, Paerl HW, Gao G, Wu P, Zhang W, Deng J, Zhu G, Zhang Y, Xu H, Niu H (2014) Environmental factors controlling colony formation in blooms of the cyanobacteria Microcystis spp. in Lake Taihu, China. Harmful Algae 31:136–142

    Article  CAS  Google Scholar 

  • Ma QZ, Wu FJ, Zhang DQ, Peng WX (2011) Py-GC-MS analysis on benzene-alcohol extractives of Phyllostachys pubescens for biomedical engineering. Key Eng Mater 480:211–214

    Article  Google Scholar 

  • Malloy KL, Suyama TL, Engene N, Debonsi H, Cao Z, Matainaho T, Spadafora C, Murray TF, Gerwick WH (2011) Credneramides A and B: neuromodulatory phenethylamine and isopentylamine derivatives of a vinyl chloride-containing fatty acid from cf. Trichodesmium sp. nov. J Nat Prod 75:60–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Manage PM, Kawabata Z, Nakano S-i (2001) Dynamics of cyanophage-like particles and algicidal bacteria causing Microcystis aeruginosa mortality. Limnology 2:73–78

    Article  Google Scholar 

  • Middelboe M, Søndergaard M, Letarte Y, Borch N (1995) Attached and free-living bacteria: production and polymer hydrolysis during a diatom bloom. Microb Ecol 29:231–248

    Article  CAS  PubMed  Google Scholar 

  • Mohamed H, Ons M, Yosra ET, Rayda S, Neji G, Moncef N (2009) Chemical composition and antioxidant and radical‐scavenging activities of Periploca laevigata root bark extracts. J Sci Food Agric 89:897–905

    Article  CAS  Google Scholar 

  • Nakamura N, Nakano K, Sugiura N, Matsumura M (2003) A novel cyanobacteriolytic bacterium, Bacillus cereus, isolated from a eutrophic lake. J Biosci Bioeng 95:179–184

    Article  CAS  PubMed  Google Scholar 

  • Ngang JEJ et al (2014) Characterization of Mexican coriander (Eryngium foetidum) essential oil and its inactivation of Listeria monocytogenes In vitro and during mild thermal pasteurization of pineapple juice. J Food Protect 77:435–443

    Article  CAS  Google Scholar 

  • Parker DL (1982) Improved procedures for the cloning and purification of Microcystis cultures (Cyanophyta) 1. J Phycol 18:471–477

    Article  Google Scholar 

  • Parveen B, Ravet V, Djediat C, Mary I, Quiblier C, Debroas D, Humbert JF (2013) Bacterial communities associated with Microcystis colonies differ from free living communities living in the same ecosystem. Environ Microbiol Rep 5:716–724

    CAS  PubMed  Google Scholar 

  • Pereira S, Zille A, Micheletti E, Moradas‐Ferreira P, De Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941

    Article  CAS  PubMed  Google Scholar 

  • Plude JL, Parker DL, Schommer OJ, Timmerman RJ, Hagstrom SA, Joers JM, Hnasko R (1991) Chemical characterization of polysaccharide from the slime layer of the cyanobacterium Microcystis flos-aquae C3-40. Appl Environ Microbiol 57:1696–1700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Porter KG (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Reynolds CS, Jaworski G, Cmiech H, Leedale G (1981) The formation of colonies or aggregates might be phenotypic response of individuals to current environmental conditions. Phil Trans R Soc B 4:419–477

    Article  Google Scholar 

  • Rippka R (1988) Isolation and purification of cyanobacteria. Method Enzymol 167:3

    Article  CAS  Google Scholar 

  • Romo S, Soria J, Fernandez F, Ouahid Y, Barón-Solá Á (2013) Water residence time and the dynamics of toxic cyanobacteria. Freshw Biol 58:513–522

    Article  CAS  Google Scholar 

  • Scott JH, Nealson KH (1994) A biochemical study of the intermediary carbon metabolism of Shewanella putrefaciens. J Bacteriol 176:3408–3411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sedmak B, Eleršek T (2006) Microcystins induce morphological and physiological changes in selected representative phytoplanktons. Microb Ecol 51:508–515

    Article  CAS  PubMed  Google Scholar 

  • Sharman M, Read WA, Castle L, Gilbert J (1994) Levels of di-(2-ethylhexyl) phthalate and total phthalate esters in milk, cream, butter and cheese. Food Addit Contam 11:375–385

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Niu Y, Xie P, Tao M, Yang X (2011) Morphological and physiological changes in Microcystis aeruginosa as a result of interactions with heterotrophic bacteria. Freshw Biol 56:1065–1080

    Article  CAS  Google Scholar 

  • Shi L, Cai Y, Kong F, Yu Y (2012) Specific association between bacteria and buoyant Microcystis colonies compared with other bulk bacterial communities in the eutrophic Lake Taihu, China. Environ Microbiol Rep 4:669–678

    CAS  PubMed  Google Scholar 

  • Shi L, Cai Y, Wang X, Li P, Yu Y, Kong F (2010) Community structure of bacteria associated with Microcystis colonies from cyanobacterial blooms. J Freshw Ecol 25:193–203

    Article  CAS  Google Scholar 

  • Shirai M, Matumaru K, Ohotake A, Takamura Y, Aida T, Nakano M (1989) Development of a solid medium for growth and isolation of axenic Microcystis strains (cyanobacteria). Appl Environ Microbiol 55:2569–2571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sundh I (1992) Biochemical composition of dissolved organic carbon derived from phytoplankton and used by heterotrophic bacteria. Appl Environ Microbiol 58:2938–2947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima I, Yamamoto M (1987) Characterization of plasma polymers from tetramethylsilane, octamethylcyclotetrasiloxane, and methyltrimethoxysilane. J Polym Sci Polym Chem 25:1737–1744

    Article  CAS  Google Scholar 

  • Tian C, Liu X, Tan J, Lin S, Li D, Yang H (2012) Isolation, identification and characterization of an algicidal bacterium from Lake Taihu and preliminary studies on its algicidal compounds. J Environ Sci 24:1823–1831

    Article  CAS  Google Scholar 

  • Valdor R, Aboal M (2007) Effects of living cyanobacteria, cyanobacterial extracts and pure microcystins on growth and ultrastructure of microalgae and bacteria. Toxicon 49:769–779

    Article  CAS  PubMed  Google Scholar 

  • Walker HL, Higginbotham LR (2000) An Aquatic bacterium that lyses cyanobacteria associated with off-flavor of channel catfish Ictalurus punctatus. Biol Control 18:71–78

    Article  Google Scholar 

  • Wang X, Cotter E, Iyer KN, Fang J, Williams BJ, Biswas P (2015) Relationship between pyrolysis products and organic aerosols formed during coal combustion. Proc Combust Inst 35:2347–2354

    Article  CAS  Google Scholar 

  • Worm J, Sondergaard M (1998) Dynamics of heterotrophic bacteria attached to Microcystis spp. (Cyanobacteria). Aquat Microb Ecol 14:19–28

    Article  Google Scholar 

  • Wu ZX, Song LR (2008) Physiological comparison between colonial and unicellular forms of Microcystis aeruginosa Kütz. (Cyanobacteria). Phycologia 47:98–104

    Article  CAS  Google Scholar 

  • Xu H, Yu G, Jiang H (2013) Investigation on extracellular polymeric substances from mucilaginous cyanobacterial blooms in eutrophic freshwater lakes. Chemosphere 93:75–81

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Kong FX, Tan X, Yang Z, Cao HS, Xing P (2007) Biochemical, morphological, and genetic variations in Microcystis aeruginosa due to colony disaggregation. World J Microb Biotechnol 23:663–670

    Article  CAS  Google Scholar 

  • Zhang P, Zhai C, Wang X, Liu C, Jiang J, Xue Y (2013) Growth competition between Microcystis aeruginosa and Quadrigula chodatii under controlled conditions. J Appl Phycol 25:555–565

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. J. S. Owen for his constructive suggestions and professional editing, Mr Liang Chen for his help in revising the manuscript, and Dr. Yuan Niu and Juan Lin for their help in sample preparation. This study was supported by the National Natural Science Foundation of China (31400407), the National High Technology Research and Development Program of China (Grant no. 2012ZX07105-004) and State Key Laboratory of freshwater ecology and biotechnology (2014FB15 and 2014FBZ02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Xie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 344 kb)

ESM 2

(DOCX 159 kb)

ESM 3

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Shen, H., Shi, P. et al. Experimental evidence for the role of heterotrophic bacteria in the formation of Microcystis colonies. J Appl Phycol 28, 1111–1123 (2016). https://doi.org/10.1007/s10811-015-0659-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0659-5

Keywords

Navigation