Skip to main content
Log in

Characterization of the iron-containing superoxide dismutase and its response to stress in cyanobacterium Spirulina (Arthrospira) platensis

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Superoxide dismutase (SOD) is considered a primary antioxidant which defends against reactive oxygen species that are induced by environmental stress. In this study, we examined changes in SOD activity and expression in the cyanobacterium Spirulina (Arthrospira) platensis under iron and salinity stress; we characterized its induction under these stress conditions and we overexpressed the enzyme in a bacterial host for preliminary characterization. Analysis of SOD isoforms concludes that S. platensis was found to regulate only the iron-containing SOD isoform (FeSOD) in response to two types of stress that were tested. The FeSOD expression (on the level of both mRNA and enzyme activity) was induced by the stress conditions of salinity and iron levels. The FeSOD from S. platensis was overexpressed in Escherichia coli BL21. The recombinant FeSOD protein (about 23 kDa) was purified for characterization. It showed high specific activity and pH stability at 6.0–9.0, and it is relatively thermostable, retaining 45 % of its activity after 30 min at 90 °C. Phylogenetic analysis reveals that S. platensis FeSOD is grouped with the FeSODs from other cyanobacterial species and separated from those of the eukaryotic Chlorophyta, suggesting that the FeSOD gene may be used as a molecular marker in physiological, phylogenetic, and taxonomic studies. This study also suggests that the increased activity and expression of SOD may play a role in algal survival under stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • APHA (American Public Health Association) (1985) Standard methods for the examination of water and waste water, 16th edn. American Public Health Association, New York

    Google Scholar 

  • Aydemir T, Tarhan L (2001) Purification and partial characterisation of superoxide dismutase from chicken erythrocytes. Turk J Chem 25:451–459

    CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya J, GhoshDastidar K, Chatterjee A, Majee M, Majumder AL (2004) Synechocystis Fe superoxide dismutase gene confers oxidative stress tolerance to Escherichia coli. Biochem Biophys Res Commun 316:540–544

    Article  CAS  PubMed  Google Scholar 

  • Butow BJ, Wynne D, Tel-Or E (1997) Superoxide dismutase activity in Perdinium gatwnse in Lake Kinneret: effect of light regime and carbon dioxide concentration. J Phycol 33:787–793

    Article  CAS  Google Scholar 

  • Campbell WS, Laudenbach DE (1995) Characterization of four superoxide dismutase genes from a filamentous cyanobacterium. J Bacteriol 17:964–972

    Google Scholar 

  • Chadd HE, Newman J, Mann NH, Carr NG (1996) Identification of iron superoxide dismutase and a copper/zinc superoxide dismutase enzyme activity within the marine cyanobacterium Synechococcus sp. WH 7803. FEMS Microbiol Lett 138:161–165

    Article  CAS  PubMed  Google Scholar 

  • Choudhary M, Jetley UK, Abash Khan M, Zutshi S, Fatma T (2007) Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol Environ Saf 66:204–209

    Article  CAS  PubMed  Google Scholar 

  • Deniz F, Saygideger SD, Karaman S (2011) Response to copper and sodium chloride excess in Spirulina sp. (Cyanobacteria). Bull Environ Contam Toxicol 87:11–15

    Article  CAS  PubMed  Google Scholar 

  • Desai K, Sivakami S (2007) Purification and biochemical characterization of a superoxide dismutase from the soluble fraction of the cyanobacterium, Spirulina platensis. World J Microbiol Biotechnol 23:1661–1666

    Article  CAS  Google Scholar 

  • Dhiab RB, Ouada HB, Boussetta H, Franck F, Elabed A, Brouers M (2007) Growth, fluorescence, photosynthetic O2 production and pigment content of salt adapted cultures of Arthrospira (Spirulina) platensis. J Appl Phycol 19:293–301

    Article  Google Scholar 

  • Doering M, Piercey-Normore MD (2009) Genetically divergent algae an epiphytic lichen community on Jack Pine in Manitoba. Lichenologist 41:69–80

    Article  Google Scholar 

  • Dufernez F, Derelle E, Noel C, Sanciu G, Mantini C, Dive D, Soyer-Gobillard MO, Capron M, Pierce RJ, Wintjens R, Guillebault D, Viscogliosi E (2008) Molecular characterization of iron-containing superoxide dismutases in the heterotrophic dinoflagellate Crypthecodinium cohnii. Protist 159:223–238

    Article  CAS  PubMed  Google Scholar 

  • Dytham C (1999) Choosing and using statistics: a biologist’s guide. Blackwell Science, London, p 147

    Google Scholar 

  • El-Sheekh MM, Rady AA (1995) Temperature shift-induced changes in the antioxidant enzyme system of cyanobacterium Synechocystis PCC 6803. Biol Plantarum 37:21–25

    Article  CAS  Google Scholar 

  • Estevez MS, Malanga G, Puntarulo S (2001) Iron-dependent oxidative stress in Chlorella vulgaris. Plant Sci 161:9–17

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies approach using bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  CAS  PubMed  Google Scholar 

  • Grace SC (1990) Phylogenetic distribution of superoxide dismutase supports an endosymbiotic origin for chloroplasts and mitochondria. Life Sci 47:1875–1886

    Article  CAS  PubMed  Google Scholar 

  • Gregory EM, Fridovich I (1973) Induction of superoxide dismutase by molecular oxygen. J Bacteriol 114:543–548

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo J, Gong X, Lu Y, Lu M, Xu F, Zhou Y (2004) Fe-SOD gene cloning and sequence analysis of Spirulina platensis. J Zhejiang Univ 31(6):674–678

    CAS  Google Scholar 

  • Herbert SK, Samson G, Fork DC, Laudenbach DE (1992) Characterization of damage to photosystems I and II in a cyanobacterium lacking detectable iron superoxide dismutase activity. Proc Natl Acad Sci U S A 89:8716–8720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jeanmougin F, Thompson JD, Gouy M, Higgins M, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405

    Article  CAS  PubMed  Google Scholar 

  • Kerfeld CA, Yoshida S, Tran KT, Yeates TO, Cascio D, Bottin H, Berthomieu C, Sugiura M, Boussac A (2003) The 1.6 A resolution structure of Fe-superoxide dismutase from the thermophilic cyanobacterium Thermosynechococcus elongatus. J Biol Inorg Chem 8:707–714

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Suh KH (2005) Light-dependent expression of superoxide dismutase from cyanobacterium Synechocystis sp. strain PCC 6803. Arch Microbiol 183:218–223

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Le Roux F, Gay M, Lambert C, Nicolas JL, Gouy M, Berthe F (2004) Phylogenetic study and identification of Vibrio splendidus-related strains based on gyrB gene sequence. Dis Aquat Organ 58:143–150

    Article  PubMed  Google Scholar 

  • Li T, Huang X, Zhou R, Liu Y, Li B, Nomura C, Zhao J (2002) Differential expression and localization of Mn and Fe superoxide dismutases in the heterocystous cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 184:5096–5103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lumsden J, Cammack R, Hall DO (1976) Purification and physicochemical properties of superoxide dismutase from two photosynthetic microorganisms. Biochim Biophys Acta 438:380–392

    Article  CAS  PubMed  Google Scholar 

  • Ohmori K, Ehira S, Kimura S, Ohmori M (2009) Changes in the amount of cellular trehalose, the activity of maltooligosyl trehalose hydrolase, and the expression of its gene in response to Salt stress in the cyanobacterium Spirulina platensis. Microbes Environ 24:52–56

    Article  PubMed  Google Scholar 

  • Padmapriya V, Anand N (2010) The influence of metals on the antioxidant enzyme, superoxide dismutase, present in the cyanobacterium, Anabaena variabilis KÜTZ. ARPN J Agric Biol Sci 5:4–9

    Google Scholar 

  • Panda SK, Khan MH (2004) Changes in growth and superoxide dismutase activity in Hydrilla verticillata L. under abiotic stress. Braz J Plant Physiol 16:115–118

    Article  CAS  Google Scholar 

  • Priya B, Premanandh J, Dhanalakshmi RT, Seethalakshmi T, Uma L, Prabaharan D, Subramanian G (2007) Comparative analysis of cyanobacterial superoxide dismutases to discriminate canonical forms. BMC Genomics 8:435–445

    Article  PubMed Central  PubMed  Google Scholar 

  • Regelsberger G, Jakopitsch C, Plasser L, Schwaiger H, Furtmuller PG, Peschek GA, Zamocky M, Obinger C (2002) Occurrence and biochemistry of hydroperoxidases in oxygenic phototrophic prokaryotes (cyanobacteria). Plant Physiol Biochem 40:479–490

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Shalaby EA, Shanab SMM, Singh V (2010) Salt stress enhancement of antioxidant and antiviral efficiency of Spirulina platensis. J Med Plant Res 4:2622–2632

    CAS  Google Scholar 

  • Singh DP, Kshatriya K (2002) NaCl-induced oxidative damage in the cyanobacterium Anabaena doliolum. Curr Microbiol 44:411–417

    Article  CAS  PubMed  Google Scholar 

  • Sunda WG, Huntsman SA (1997) Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390:389–392

    Article  CAS  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (* and other methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Teneva I, Stoyanov P, Mladenov R, Dzhambazov B (2012) Molecular and phylogenetic characterization of two species of the genus Nostoc (Cyanobacteria) based on the cpcB-IGS-cpcA locus of the phycocyanin operon. J BioSci Biotech 1:9–19

    Google Scholar 

  • Thomas DJ, Avenson TJ, Thomas JB, Herbert SK (1998) A cyanobacterium lacking iron superoxide dismutase is sensitized to oxidative stress induced with methyl viologen but not sensitized to oxidative stress induced with norflurazon. Plant Physiol 116:1593–1602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tichy M, Vermaas W (1999) In vivo role of catalase-peroxidase in Synechocystis sp. strain PCC 6803. J Bacteriol 181:1875–1882

    CAS  PubMed Central  PubMed  Google Scholar 

  • Torzillo G, Vonshak A (1994) Effect of light and temperature on the photosynthetic capacity of the cyanobacterium Spirulina platensis. Biomass Bioenergy 6:399–403

    Article  Google Scholar 

  • Ürek RÖ, Tarhan L (2012) The relationship between the antioxidant system and phycocyanin production in Spirulina maxima with respect to nitrate concentration. Turk J Bot 36:369–377

    Google Scholar 

  • Vonshak A, Guy R, Guy M (1988) The response of the filamentous cyanobacterium Spirulina platensis to salt stress. Arch Microbiol 150:417–420

    Article  Google Scholar 

  • Wang C, Kong HN, Wang XZ, Wu HD, Lin Y, He SB (2010) Effects of iron on growth and intracellular chemical contents of Microcystis aeruginosa. Biomed Environ Sci 23:48–52

    Article  PubMed  Google Scholar 

  • Wang J, Sommerfeld M, Qiang H (2011) Cloning and expression of isoenzymes of superoxide dismutase in Haematococcus pluvialis (Chlorophyceae) under oxidative stress. J Appl Phycol 23:995–1003

    Article  CAS  Google Scholar 

  • Wolfe-Simon F, Grzebyk D, Schofield O, Falkowski PG (2005) The role and evolution of superoxide dismutases in algae. J Phycol 41:453–465

    Article  CAS  Google Scholar 

  • Xia WC, Li SX, Fan LQ, Yuan QS (2003) Purification and properties of Fe-SOD in Spirulina platensis. J East China Univ Sci Technol 29:20–22

    CAS  Google Scholar 

  • Youn HD, Kim EJ, Roe JH, Hah YC, Kang SO (1996) A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem J 318:889–896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zarrouk C (1966) Contribution a l’etude d’une cyanobacterie: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setchell et Gardner) Geitler. Ph.D. thesis, University of Paris, Paris

  • Zhaxybayeva O, Gogarten JP, Charlebois RL, Doolittle WF, Papke RT (2006) Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res 16:1099–1108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. D. Weihrauch, Dr. G. Hausner, Dr. M.H. Abdelfattah, and Dr. M. Elhiti for technical assistance and the Department of Missions (Ministry of Higher Education and Scientific Research, Egypt) for providing financial support through a channel system scholarship (to MSI). This work was supported by grants from the Natural Sciences and Engineering Research Council (to MPN and PCL) and by the Canada Research Chair program (to PCL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa M. S. Ismaiel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 38.6 KB)

Fig. S2

(DOCX 37 kb)

Fig. S3

(DOCX 144 kb)

Table S1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ismaiel, M.M.S., El-Ayouty, Y.M., Loewen, P.C. et al. Characterization of the iron-containing superoxide dismutase and its response to stress in cyanobacterium Spirulina (Arthrospira) platensis . J Appl Phycol 26, 1649–1658 (2014). https://doi.org/10.1007/s10811-013-0233-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0233-y

Keywords

Navigation