Skip to main content
Log in

Lipids isolated from the cultivated red alga Chondrus crispus inhibit nitric oxide production

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

A MeOH extract of cultivated Chondrus crispus showed dose-dependent nitric oxide (NO) inhibition of lipopolysaccharide-induced NO production in macrophage RAW264.7 cells. NO inhibition-guided fractionation of the extract led to identification of eicosapentaenoic acid (EPA, 1), arachidonic acid (AA, 2), lutein (3), and eight galactolipids as active components. Based on spectral analysis, the isolated galactolipids were identified as (2S)-1,2-bis-O-eicosapentaenoyl-3-O-β-d-galactopyranosylglycerol (4), (2S)-1-O-eicosapentaenoyl-2-O-arachidonoyl-3-O-β-d-galactopyranosylglycerol (5), (2S)-1-O-(6Z,9Z,12Z,15Z-octadecatetranoyl)-2-O-palmitoyl-3-O-β-d-galactopyranosylglycerol (6), (2S)-1-O-eicosapentaenoyl-2-O-palmitoyl-3-O-β-d-galactopyranosylglycerol (7), (2S)-1,2-bis-O-arachidonoyl-3-O-β-d-galactopyranosylglycerol (8), (2S)-1-O-arachidonoyl-2-O-palmitoyl-3-O-β-d-galactopyranosylglycerol (9), (2S)-1-O-eicosapentaenoyl-2-O-palmitoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (10), and (2S)-1-O-arachidonoyl-2-O-palmitoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (11). All the isolated compounds showed significant NO inhibitory activity. This is the first report of the isolation and identification of individual galactolipids from C. crispus. Moreover, (2S)-1,2-bis-O-arachidonoyl −3-O-β-d-galactopyranosylglycerol (8) is a novel compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aktan F (2004) iNOS-mediated nitric oxide production and its regulation. Life Sci 75:639–653

    Article  CAS  PubMed  Google Scholar 

  • Banskota AH, Gallant P, Stefanova R, Melanson R, O'Leary SJB (2013a) Monogalactosyldiacylglycerols, potent nitric oxide inhibitors from the marine microalga Tetraselmis chui. Nat Prod Res 27:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Banskota AH, Stefanova R, Gallant P, McGinn PJ (2013b) Mono- and digalactosyldiacylglycerols: potent nitric oxide inhibitors from the marine microalga Nannochloropsis granulata. J Appl Phycol 25:349–357

    Article  CAS  Google Scholar 

  • Banskota AH, Stefanova R, Sperker S, Melanson R, O'Leary SJB (2013c) Five new galactolipids from the freshwater microalga Porphyridium aerugineum and their nitric oxide inhibitory activity. J Appl Phycol 25:951–960

    Article  CAS  Google Scholar 

  • Carpentier S, Knaus M, Suh M (2009) Associations between lutein, zeaxanthin, and age-related macular degeneration: an overview. Crit Rev Food Sci Nutr 49:313–316

    Article  CAS  PubMed  Google Scholar 

  • Christensen LP (2009) Galactolipids as potential health promoting compounds in vegetable foods. Recent Patents Food Nutr Agric 1:50–58

    Article  CAS  Google Scholar 

  • Cox S, Abu-Ghannam N, Gupta S (2010) An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. Int Food Res J 17:205–220

    CAS  Google Scholar 

  • Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393

    Article  CAS  Google Scholar 

  • Franklin LA, Yakovleva I, Karsten U, Lüning K (1999) Synthesis of mycosporine-like amino acids in Chondrus crispus (Florideophyceae) and the consequences for sensitivity to ultraviolet B radiation. J Phycol 35:682–693

    Article  CAS  Google Scholar 

  • Hafting JT, Critchley AT, Cornish ML, Hubley SA, Archibald AF (2012) On-land cultivation of functional seaweed products for human usage. J Appl Phycol 24:385–392

    Article  Google Scholar 

  • Harris WS, Mozaffarian D, Rimm E, Kris-Etherton P, Rudel LL, Appel LJ, Engler MM, Engler MB, Sacks F (2009) Omega-6 fatty acids and risk for cardiovascular disease: a science advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention. Circulation 119:902–907

    Article  PubMed  Google Scholar 

  • Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    Article  CAS  Google Scholar 

  • Jiang R-W, Hay ME, Fairchid CR, Prudhomme J, Roch KL, Aalbersberg W, Kubanek J (2008) Antineoplastic unsaturated fatty acids from Fijian macroalgae. Phytochemistry 69:2495–2500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiménez-Escrig A, Jiménez-Jiménez I, Pulido R, Saura-Calixto F (2001) Antioxidant activity of fresh and processed edible seaweeds. J Sci Food Agric 81:530–534

    Article  Google Scholar 

  • Khachik F, Englert G, Daitch CE, Beecher GR, Tonucci LH, Lusby WR (1992) Isolation and structural elucidation of the geometrical isomers of lutein and zeaxanthin in extracts from human plasma. J Chromatogr 582:153–166

    Article  CAS  PubMed  Google Scholar 

  • Kuo PC, Schroeder RA (1995) The emerging multifaceted roles of nitric oxide. Ann Surg 221:220–235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laycock MV, Craigie JS (1977) The occurrence and seasonal variation of gigartinine and L-citrullinyl-L-arginine in Chondrus crispus Stack. Can J Biochem 55:27–30

    Article  CAS  PubMed  Google Scholar 

  • Leblond JD, Timofte HI, Roche SA, Porter NM (2010) Mono- and digalactosyldiacylglycerol composition of glaucocystophytes (Glaucophyta): a modern interpretation using positive-ion electrospray ionization/mass spectrometry/mass spectrometry. Phycol Res 58:222–229

    Article  CAS  Google Scholar 

  • McHugh DJ (2003) A Guide to the Seaweed Industry. FAO Fisheries Technical Paper 441. Chapter 8. Seaweeds used as human food. FAO, Rome. http://www.fao.org/docrep/006/y4765e/y4765e0b.htm

  • Mouritsen OG, Dawczynski C, Duelund L, Jahreis G, Vetter W, Schröder M (2013) On the human consumption of the red seaweed dulse (Palmaria palmata (L.) Weber & Mohr). J Appl Phycol. doi:10.1007/s10811-013-0014-7

    Google Scholar 

  • Mullen A, Loscher CE, Roche HM (2010) Anti-inflammatory effects of EPA and DHA are dependent upon time and dose–response elements associated with LPS stimulation in THP-1-derived macrophages. J Nutr Biochem 21:444–450

    Article  CAS  PubMed  Google Scholar 

  • Naylor J (1976) Production, Trade and Utilization of Seaweeds and Seaweed Products. Part 3. Seaweed as Food. Fisheries Technical Paper no. 159, 73 pp., FAO, Rome. http://www.fao.org/docrep/005/ac860e/ac860e00.HTM

  • Oshima Y, Yamada SH, Matsunaga K, Moriya T, Ohizumi Y (1994) A monogalactosyl diacylglycerol from a cultured marine dinoflagellate, Scrippsiella trochoidea. J Nat Prod 57:534–536

    Article  CAS  PubMed  Google Scholar 

  • Rafi MM, Shafaie Y (2007) Dietary lutein modulates inducible nitric oxide synthase (iNOS) gene and protein expression in mouse macrophage cells (RAW 264.7). Mol Nutr Food Res 51: 333–340

    Google Scholar 

  • Pereira R, Yarish C, Critchley AT (2012) Seaweed aquaculture for human foods in land-based and IMTA systems. In: Meyers RA (ed) Encyclopedia of Sustainability Science and Technology. Springer, Berlin, pp 9109–9128

    Chapter  Google Scholar 

  • Pettitt TR, Jones AL, Harwood JL (1989) Lipids of the marine red algae, Chondrus crispus and Polysiphonia lanosa. Phytochemistry 28:399–405

    Article  CAS  Google Scholar 

  • Rupérez P, Saura-Calixto F (2001) Dietary fibre and physicochemical properties of edible Spanish seaweeds. Eur Food Res Technol 212:349–354

    Article  Google Scholar 

  • Saito A, Idler DR (1966) Sterols in Irish moss (Chondrus crispus). Can J Biochem 44:1195–1199

    Article  CAS  PubMed  Google Scholar 

  • Sindhu ER, Preethi KC, Kuttan R (2010) Antioxidant activity of carotenoid lutein in vitro and in vivo. Indian J Exp Biol 48:843–848

    CAS  PubMed  Google Scholar 

  • Wada H, Murata N (1990) Temperature-induced changes in the fatty acid composition of the cyanobacterium, Synechocystis PCC6803. Plant Physiol 92:1062–1069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Young EG, Smith DG (1958) Amino acids, peptides, and proteins of Irish moss, Chondrus crispus. J Biol Chem 233:406–410

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank J. Hui and Dr. J. Melanson, National Research Council Canada for HRMS measurement. The Atlantic Innovation Fund (AIF) of the Atlantic Canada Opportunities Agency (ACOA) is thanked for partial funding of cultivated biomass preparation used in this study. This is NRC publication no. 55477.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjun H. Banskota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banskota, A.H., Stefanova, R., Sperker, S. et al. Lipids isolated from the cultivated red alga Chondrus crispus inhibit nitric oxide production. J Appl Phycol 26, 1565–1571 (2014). https://doi.org/10.1007/s10811-013-0174-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0174-5

Keywords

Navigation