Skip to main content

Seaweed Aquaculture for Human Foods in Land-Based and IMTA Systems

  • Reference work entry
Encyclopedia of Sustainability Science and Technology

Definition of the Subject and Its Importance

The production of seaweeds for human foods in land-based aquaculture, is an activity poorly presented by the scientific community. Of the thousands of seaweed species identified, a remarkably small subset is actually farmed in the marine environment (i.e., open water) and even fewer are grown in land-based aquaculture systems. Of those that are used in land-based systems, most are monocultures grown for specific high value uses. For instance, C. crispus, P. palmata, and Saccharina latissima are grown for human consumption; Chondrocanthus and the “Trailiella” stage of Bonnemaisonia/Asparagopsis for the cosmetic industry; and Gracilaria spp., Palmaria and Ulvaspp. as feed for abalone). Given the many centuries history of terrestrial production of land plants for human and animal feed crops and the tremendous efforts given over to the selection and crossbreeding of these plants, by contrast, selection and improvement of seaweed crops is very...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Algae:

A group of autotrophic organisms, containing chlorophyll a and sometimes other accessory pigments, which are able to convert solar energy into chemical energy via photosynthesis.

Aquaculture:

The farming of autotrophic and heterotrophic organisms in aquatic systems.

Bioextraction:

An environmental management strategy by which nutrients are removed from an aquatic ecosystem through the harvest of enhanced biological production, including the aquaculture of suspension-feeding shellfish and/or marine macroalgae.

Ecosystem:

Is the grouping of all living organisms occupying a particular unit of space and interacting with each other and their environment.

EPA:

Eicosapentaenoic acid is an omega-3 polyunsaturated fatty acid, sometimes presented with the chemical notation 20:5(n-3).

HDL:

High-density lipoprotein; composed of a high proportion of protein and relatively little cholesterol; high levels of HDL are thought to be associated with a decreased risk of coronary heart disease and atherosclerosis.

Heteromorphic life histories:

Life histories in which there are clear morphological differences between the different stages of the life cycle, i.e., individuals of the sporophyte and gametophyte stages are morphologically different and distinguishable. In some cases, such as the genus Porphyra and members of the kelps, there are macroscopic and microscopic stages alternating life cycle phases.

IMTA:

Integrated Multi-Trophic Aquaculture is a form of aquaculture in which organisms from different trophic levels, with complementary resource needs, are produced in the same system. Typically, these aquaculture systems integrate the production of a fed organism, such as fish or shrimp, with that of extractive organic aquaculture such as shellfish and the extractive inorganic aquaculture of seaweed.

Isomorphic life histories:

Life histories in which there are no distinguishing morphological differences between the different stages of the life cycle, i.e., the individuals of the sporophyte (diploid, 2n) and gametophyte (haploid, n) stages are morphologically identical and can be distinguished only when their respective, characteristic reproductive structures are present, e.g., Chondrus crispus and Palmaria palmata.

LDL:

Low-density lipoprotein; a lipoprotein that transports cholesterol in the blood, composed of a moderate amount of protein and a large amount of cholesterol; high levels of LDL are thought to be associated with an increased risk of coronary heart disease and atherosclerosis.

Macroalgae:

A group of macroscopic algae of which at least one part of their life history is multicellular and visible with unaided eye.

Mariculture:

Farming of autotrophic and heterotrophic organisms in marine systems, i.e., using seawater.

Polysaccharides:

Complex structural polymers. They have a structural function in the alga but may be extracted industrially to provide a range of polysaccharides used for their rheological properties, e.g., agar, carrageenan, and alginic acid.

Seaweed:

A group of macroscopic, marine autotrophic algae.

Sea-vegetables:

A group of macroscopic, marine autotrophic algae, also called seaweeds, seaplants, or macroalgae; they may be used as vegetables for human consumption or raw materials for a range of industrial, commercially important extracts such as bioactives or polysaccharides.

Bibliography

Primary Literature

  1. Ryther JH, Goldman JC, Gifford JE, Huguenin JE, Wing AS, Clarner JP, Williams LD, Lapointe BE (1975) Physical models of integrated waste recycling marine polyculture systems. Aquaculture 5:163–177

    Article  Google Scholar 

  2. Lüning K (1990) Seaweeds: their environment, biogeography, and ecophysiology. Wiley, New York, p 527

    Google Scholar 

  3. McHugh DJ (2003) A guide to the seaweed industry. FAO Fisheries Technical Paper 441. FAO, Rome, Italy

    Google Scholar 

  4. Bixler HJ, Porse H (2010) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol. doi:10.1007/s10811-010-9529-3

    Google Scholar 

  5. Graham L, Graham J, Wilcox L (2009) Algae, 2nd edn. Benjamin Cummings (Pearson), San Francisco, p 720

    Google Scholar 

  6. Levin SA, Lubchenco J (2008) Resilience, robustness, and marine ecosystem-based management. Biosciences 58(1):27–32

    Article  Google Scholar 

  7. Yarish C, Pereira R (2008) Mass production of marine macroalgae. In: Jørgensen SE, Fath BD (eds) Ecological engineering, vol 3 of encyclopedia of ecology, 5 vols. Elsevier, Oxford, pp 2236–2247

    Google Scholar 

  8. Goh CS, Lee KT (2009) A visionary and conceptual macroalgae-based third generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renewable Sustainable Energy Rev 14:842–848

    Article  CAS  Google Scholar 

  9. Chung IK, Beardall J, Mehta S, Sahoo D, Stojkovic S (2010) Using marine macroalgae for carbon sequestration: a critical appraisal. J Appl Phycol. doi:10.1007/s10811-010-9604-9

    Google Scholar 

  10. Kumar P (2010) Biofuels set for a sea-change. Biospectrum November 2010:48–50

    Google Scholar 

  11. Notoya M (2010) Production of biofuel by macroalgae with preservation of marine resources and environment. In: Israel A, Einav R, Seckbach J (eds) Seaweeds and their role in globally changing environments, vol 15, Cellular origin, life in extreme habitats and astrobiology. Springer Science+Business Media BV, Dordrecht, pp 217–228

    Chapter  Google Scholar 

  12. Dillehay TD, Ramírez C, Pino M, Collins MB, Rossen J, Pino-Navarro JD (2008) Monte Verde: seaweed, food, medicine, and the peopling of South America. Science 320:784–786

    Article  CAS  Google Scholar 

  13. Erlandson JM, Graham MH, Bourque BJ, Corbett D, Estes JA, Steneck RS (2007) The kelp highway hypothesis: marine ecology, the coastal migration theory, and the peopling of the Americas. J Isl Coast Archaeol 2:161–174

    Article  Google Scholar 

  14. Mumford TF, Miura A (1988) Porphyra as food: cultivation and economics. In: Lemby CA, Walland JR (eds) Algae and human affairs. Cambridge University Press, Cambridge, pp 87–117

    Google Scholar 

  15. Abbott IA (1996a) Ethnobotany of seaweeds: clues to uses of seaweeds. International Seaweed Symposium XV. Hydrobiologia 326/327:15–20

    Google Scholar 

  16. Abbott IA (1996) Limu: an ethnobotanical study of some Hawaiian seaweeds, 4th edn. National Tropical Botanical Garden, Lawai, p 39

    Google Scholar 

  17. Konishi T (2008) Integrated functions of diet in anti-aging and cancer prevention. Papers from the 4th international Niigata symposium on diet and health, Niigata, Japan, 20–30 Nov 2008. BioFactors 34(4):261–342

    Google Scholar 

  18. Parrot MD, Greenwood CE (2008) Dietary influences on cognitive function with aging: from high-fat diets to healthful eating. Ann NY Acad Sci 1114:389–397

    Article  CAS  Google Scholar 

  19. O’Sullivan L, Murphy B, McLoughlin P, Duggan P, Lawlor PG, Hughes H, Gardiner GE (2010) Prebiotics from marine macroalgae for human and animal health applications. Mar Drugs 8:2038–2064. doi:10.3390/md8072038

    Article  CAS  Google Scholar 

  20. Plaza M, Cifuentes A, Ibañez E (2008) In the search of new functional food ingredients from algae. Trends Food Sci Technol 19:31–39

    Article  CAS  Google Scholar 

  21. Kumar CS, Ganesan P, Suresh SV, Bhaskar N (2008) Seaweeds as a source of nutritionally beneficial compounds. J Food Sci Technol 45(1):1–13

    CAS  Google Scholar 

  22. Bocanegra A, Bastida S, Benedí J, Ródenas S, Sánchez-Muniz FJ (2009) Characteristics and nutritional and cardiovascular-health properties of seaweeds. J Med Food 12(2):236–258

    Article  CAS  Google Scholar 

  23. Noda H (1993) Health benefits and nutritional properties of nori. J Appl Phycol 5:255–258

    Article  Google Scholar 

  24. Nisizawa K, Noda H, Kikuchi R, Watanabe T (1987) The main seaweed foods in Japan. Hydrobiologia 151/152:5–29

    Article  Google Scholar 

  25. Tsuboyama-Kasaoka N, Shozawa C, Sano K, Kamei Y, Kasaoka S, Hosokawa Y, Ezaki O (2006) Taurine (2-aminoethanesulfonic acid) deficiency creates vicious circle promoting obesity. Endocrinology 147(7):3276–3284

    Article  CAS  Google Scholar 

  26. Burtin P (2003) Nutritional value of seaweeds. Electron J Environ Agric Food Chem 2(4):498–503

    Google Scholar 

  27. Holdt S, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol. doi:10.1007/s10811-010-9632-5

    Google Scholar 

  28. Cornish ML, Garbary DJ (2010) Antioxidants from macroalgae: potential applications in human health and nutrition. Algae 25(4). doi:10.4490/algae.2010.25.4.000

    Google Scholar 

  29. Blouin N, Calder BL, Perkins B, Brawley SH (2006) Sensory and fatty acid analysis of two Atlantic species of Porphyra. J Appl Phycol 18:79–85

    Article  CAS  Google Scholar 

  30. Zhang Q, Li N, Zhou G, Lu X, Xu Z, Li Z (2003) In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodophyta) in aging mice. Pharmacol Res 48:151–155

    Article  CAS  Google Scholar 

  31. Díaz-Rubio ME, Pérez-Jiménez J, Saura-Calixto F (2009) Dietary fiber and antioxidant capacity in Fucus vesiculosus products. Int J Food Sci Nutr 60(S2):23–34

    Article  CAS  Google Scholar 

  32. Zhou HP, Chen QH (1990) Anticoagulant and antihyperlipedemic effects of polysaccharide from Porphyra yezoensis. J China Pharm Univ 21:358–360

    CAS  Google Scholar 

  33. Yashizawa Y, Ametani A, Tsunehiro J, Numera K, Itoh M, Fukui F, Kaminogawa S (1995) Macrophage stimulation activity of the polysaccharide fraction from a marine alga (Porphyra yezoensis): structure-function relationships and improved solubility. Biosci Biotechnol Biochem 59:1933–1937

    Article  Google Scholar 

  34. Saito M, Kawai M, Hagino H, Okada J, Yamamoto K, Hayashida M, Ikeda T (2002) Antihypertensive effect of nori-peptides derived from red alga Porphyra yezoensis in hypertensive patients. Am J Hypertens 5(4, Part 2):210A (Published by Elsevier Science Inc)

    Article  Google Scholar 

  35. Béress A, Wassermann O, Bruhn T, Béress L, Kraiselburd EN, González LU, De Motta GE, Chávez PI (1993) A new procedure for the isolation of anti-HIV compounds (polysaccharides and polyphenols) from the marine alga Fucus vesiculosus. J Nat Prod 56:478–488

    Article  Google Scholar 

  36. Aisa Y, Miyakawa Y, Nakazato T, Shibata H, Saito K, Ikeda Y, Kizami M (2005) Fucoidan induces apoptosis of human HS-sultan cells accompanied by activation of caspase-3 and down-regulation of ERK pathways. Am J Hematol 78:7–14

    Article  CAS  Google Scholar 

  37. Teas J, Harbison ML, Gelman RS (1984) Dietary seaweed (Laminaria) and mammary carcinogenesis in rats. Cancer Res 44:2758–2761

    CAS  Google Scholar 

  38. Yang YJ, Nam SJ, Kong G, Kim MK (2010) A case–control study on seaweed consumption and the risk of breast cancer. Br J Nutr 103:1345–1353

    Article  CAS  Google Scholar 

  39. Sahoo D, Tang X, Yarish C (2002) Porphyra – the economic seaweed as a new experimental system. Curr Sci 83(11):1313–1316

    Google Scholar 

  40. Gantt E, Berg GM, Bhattacharya D, Blouin NA, Brodie JA, Chan CX, Collén J, Cunninghan FX Jr, Gross J, Grossman AR, Karpowicz S, Kitade Y, Klein AS, Levine IA, Lin S, Lu S, Lynch M, Minocha SC, Müller K, Neefus CD, de Oliveira CM, Rymarquis L, Smith A, Stiller JW, Wu W-K, Yarish C, Zhuang YY, Brawley SH (2010) Porphyra: complex life histories in a harsh environment. P. umbilicalis, an intertidal red alga for genomic analysis. In: Seckbach J, Chapman DJ (eds) Red algae in the genomic age, vol 13, Cellular origin, life in extreme habitats and astrobiology. Springer, Dordrecht, pp 129–148

    Chapter  Google Scholar 

  41. Grossman AR (2007) In the grip of algal genomics. In: León R, Galvin A, Fernandez E (eds) Transgenic microalgae as green cell factories. Landers bioscience Publishers and Springer Science+Business Media, Austin, TX, pp 54–76

    Google Scholar 

  42. Grossman AR, Karpowicz SJ, Heinnickel M, Dewez D, Hamel B, Dent R, Niyogi KK, Johnson X, Alric J, Wollman F-A, Li H, Merchant SS (2010) Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation. Photosynth Res 106:3–17

    Article  CAS  Google Scholar 

  43. Guiry MD, Guiry GM (2010) AlgaeBase. World-wide electronic publication. National University of Ireland, Galway, http://www.algaebase.org; searched on 30 May 2010

  44. Pereira R, Yarish C (2010) The role of Porphyra in sustainable culture systems: physiology and applications. In: Israel A, Einav R, Seckbach J (eds) Seaweeds and their role in globally changing environments, vol 15, Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer, Dordrecht, pp 339–353. ISBN 978-90-481-8568-9

    Chapter  Google Scholar 

  45. FAO (2010) FAO fisheries and aquaculture information and statistics service (2010) Aquaculture production 1950–2008, Rome, Italy

    Google Scholar 

  46. Tseng CK (1981) Commercial cultivation. In: Lobban CS, Wynne MJ (eds) The biology of seaweeds, vol 17, Botanical Monographs. Blackwell, Oxford, pp 680–725

    Google Scholar 

  47. Doty MS (1977) Eucheuma – current marine agronomy. In: Krauss RW (ed) The marine plant biomass of the Pacific Northwest Coast. A potential economic resource. Oregon State University Press, Corvallis, pp 203–214

    Google Scholar 

  48. Houyuan L, Zhang J, Liu K, Wu N, Li Y, Zhou K, Ye M, Zhang T, Zhang H, Yang X, Shen L, Xu D, Li Q (2009) Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10, 000 years ago. PNAS 106(18):7367–7372

    Article  Google Scholar 

  49. Munro ND, Grosman L (2009) Early evidence (ca. 12,000 B.P.) for feasting at a burial cave in Israel. PNAS 107(35):15362–15366

    Article  Google Scholar 

  50. Tseng CK, Chang CF (1956) On China’s Porphyra and its cultivation. Shengwuxue Tongbao 3:29–33 Tseng CK (1981) Commercial cultivation. In: Lobban CS, Wynne MJ (eds) The biology of seaweeds. Botanical monographs, Vol 17. Blackwell Scientific Publications, University of California Press, Berkeley and Los Angeles, pp 680–725

    Google Scholar 

  51. Drew KM (1949) Conchocelis–phase in the life history of Porphyra umbilicalis (L.) Kütz. Nature 164:748–749

    Article  Google Scholar 

  52. Kurogi M (1953) Study of the life-history of Porphyra I. The germination and development of carpospores. Bull Tohoku Reg Fish Lab 2:67–103

    Google Scholar 

  53. Kurogi M (1953) On the liberation of monospores from the filamentous thallus (Conchocelis-stage) of Porphyra tenera Kjellm. Bull Tohoku Reg Fish Lab 2:104–108

    Google Scholar 

  54. Kurogi M, Sato S (1962) Influence of light on the growth and maturation of Conchocelis-thallus of Porphyra II. Effect of different photoperiods on the growth and maturation of Conchocelis-thallus of P. tenera Kjellm. Bull Tohoku Reg Fish Lab 20:127–137

    Google Scholar 

  55. Brinkhuis BH, Levine HG, Schlenk CG, Tobin S (1987) Laminaria cultivation in the far east and North America. In: Bird KT, Benson PH (eds) Seaweed cultivation for renewable resources. Elsevier, Amsterdam, pp 107–146

    Google Scholar 

  56. Chopin T, Robinson SMC, Troell M, Neori A, Buschmann AH, Fang J (2008) Multitrophic integration for sustainable marine aquaculture. In: Sven EJ, Fath BD (eds) Ecological engineering, vol 3 of encyclopedia of ecology, 5 vols. Elsevier, Oxford, pp 2463–2475

    Chapter  Google Scholar 

  57. Neori A (2008) Essential role of seaweed cultivation in integrated multi-trophic aquaculture farms for global expansion of mariculture: an analysis. J Appl Phycol 20:567–570

    Article  Google Scholar 

  58. Nobre AM, Robertson-Andersson D, Neori A, Sankar K (2010) Ecological-economic assessment of aquaculture options: comparison between abalone monoculture and integrated multi-trophic aquaculture of abalone and seaweeds. Aquaculture 306:116–126

    Article  Google Scholar 

  59. Chopin T, Troell M, Reid GK, Knowler D, Robinson SMC, Neori A, Buschmann AH, Pang SJ (2010) Integrated multi-trophic aquaculture. Part I. Responsible practice provides diversified products, biomitigation. Glob Aquac Advocate September/October 2010:38–39

    Google Scholar 

  60. Fujita RM, Wheeler PA, Edwards RL (1989) Assessment of macroalgal limitation in a seasonal upwelling region. Mar Ecol Prog Ser 53:293–303

    Article  Google Scholar 

  61. Kautsky N, Folke C (1991) Integrating open system aquaculture: ecological engineering for increased production and environmental improvement through nutrient recycling. In: Etnier C, Guterstam B (eds) Ecological engineering for wastewater treatment. Bokskogen, Gothenburg, pp 320–334

    Google Scholar 

  62. Neori A, Cohen I, Gordin H (1991) Ulva lactuca biofilters for marine fish-pond effluents. II. Growth rate, yield and C:N ratio. Bot Mar 34:483–489

    Article  Google Scholar 

  63. Krom MD, Ellner S, van Rijn J, Neori A (1995) Nitrogen and phosphorus cycling and transformations in a prototype “non-polluting” integrated mariculture system, Eilat, Israel. Mar Ecol Prog Ser 118:25–36

    Article  CAS  Google Scholar 

  64. Buschmann AH (1996) An introduction to integrated farming and the use of seaweeds as biofilters. Hydrobiologia 326/327:59–60

    Article  Google Scholar 

  65. Shpigel M, Neori A (1996) Abalone and seaweeds intensive cultivation in integrated land-based mariculture system. I. Proposed design and cost analyses. Aquacult Eng 15:313–326

    Article  Google Scholar 

  66. Troell M, Halling C, Nilsson A, Buschmann AH, Kautsky N, Kautsky L (1997) Integrated marine cultivation of Gracilaria chilensis (Gracilariales, Rhodophyta) and salmon cages for reduced environmental impact and increased economic output. Aquaculture 156:45–61

    Article  Google Scholar 

  67. Chopin T, Yarish C (1998) Nutrients or not nutrients? World Aquac Mag 29:31–33, 60–61

    Article  Google Scholar 

  68. Neori A, Shpigel M (1999) Using algae to treat effluents and feed invertebrates in sustainable integrated mariculture. World Aquac 30(2):46–51

    Google Scholar 

  69. Yarish C, Chopin T, Wilkes R, Mathieson AC, Fei XG, Lu S (1999) Domestication of nori for Northeast America: the Asian experience. Bull Aquacult Assoc Can 99:11–17

    Google Scholar 

  70. Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A, Kraemer GP, Zertuche-González JA, Yarish C, Neefus C (2001) Integrating seaweeds into marine aquaculture systems: a key towards sustainability. J Phycol 37:975–986

    Article  Google Scholar 

  71. Neori A, Chopin T, Troell M, Buschmann AH, Kraemer GP, Halling C, Shpigel M, Yarish C (2004) Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231:361–391

    Article  Google Scholar 

  72. Kraemer GP, Yarish C (1999) A preliminary comparison of the mariculture potential of Porphyra purpurea and Porphyra umbilicalis. J Appl Phycol 11:473–477

    Article  Google Scholar 

  73. Chopin T (2006) Integrated multi-trophic aquaculture. What it is and why you should care. Northern Aquac July/August 2006:4

    Google Scholar 

  74. Matos J, Costa S, Rodrigues A, Pereira R, Sousa Pinto I (2006) Experimental integrated aquaculture of fish and red seaweeds in Northern Portugal. Aquaculture 252:31–42

    Article  Google Scholar 

  75. Msuya FE, Neori A (2010) The performance and chemical composition of spray irrigated seaweed Ulva lactuca as a crop and as a biofilter of fishpond effluents. J Phycol. doi:10.1111/j.1529-8817.2010.00843.x

    Google Scholar 

  76. Abreu MH, Pereira R, Yarish C, Buschmann AH, Sousa-Pinto I. IMTA with Gracilaria vermiculophylla: productivity and nutrient removal performance of the seaweed in a land-based pilot-scale system. Aquaculture (in press). doi:10.1016/j.aquaculture.2010.12.036

    Google Scholar 

  77. Troell M, Robertson-Andersson D, Anderson RJ, Bolton JJ, Maneveldt G, Halling C, Probyn T (2006) Abalone farming in South Africa: an overview with perspectives on kelp resources, abalone feed, potential for on-farm seaweed production and socio-economic importance. Aquaculture 257:266–281

    Article  Google Scholar 

  78. Whitmarsh DJ, Cook EJ, Black KD (2006) Searching for sustainability in aquaculture: an investigation into the economic prospects for an integrated salmon-mussel production system. Mar Policy 30:293–298

    Article  Google Scholar 

  79. Robertson-Andersson DV (2007) Biological and economical feasibility studies of using Ulva lactuca (Chlorophyta) in recirculating systems in abalone farming. Doctoral dissertation, University of Cape Town, South Africa

    Google Scholar 

  80. Robertson-Andersson DV, Potgieter M, Hansen J, Bolton JJ, Troell M, Anderson RJ, Halling C, Probyn T (2008) Integrated seaweed cultivation on an abalone farm in South Africa. J Appl Phycol 20:579–595

    Article  Google Scholar 

  81. Rawson MV, Chen C, Ji R, Zhu M, Wang A, Wang L, Yarish C, Sullivan JB, Chopin T, Carmona R (2002) Understanding the interaction of extractive and fed aquaculture using ecosystem modelling. In: Stickney RR, McVey JP (eds) Responsible marine aquaculture. CABI, London, pp 263–296

    Chapter  Google Scholar 

  82. Fang J, Kuang S, Sun H, Li F, Zhang A, Wang X, Tang T (1996) Status and optimising measurements for the culture of scallop Chlamys farreri and kelp Laminaria japonica in Sanggou Bay. Mar Fish Res (Haiyang Shuichan Yanjiu) 17:95–102 (in Chinese)

    Google Scholar 

  83. Sohn CH (1996) Historical review on seaweed cultivation of Korea. Algae 11:357–364

    Google Scholar 

  84. Fei XG (2004) Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia 512:145–151

    Article  Google Scholar 

  85. Egan B, Yarish C (1990) Productivity and life history of Laminaria ongicruris at its southern limit in the western Atlantic Ocean. Mar Ecol Prog Ser 67(3):263–273

    Article  Google Scholar 

  86. Chopin T, Yarish C, Wilkes R, Belyea E, Lu S, Mathieson A (1999) Developing Porphyra/salmon integrated aquaculture for bioremediation and diversification of the aquaculture industry. J Appl Phycol 11:463–472

    Article  Google Scholar 

  87. McVey JP, Stickney RR, Yarish C, Chopin T (2002) Aquatic polyculture and balanced ecosystem management: new paradigms for seafood production. In: Stickney RR, McVey JP (eds) Responsible marine aquaculture. CABI, London, pp 91–104

    Chapter  Google Scholar 

  88. Troell M, Halling A, Neori A, Buschmann A, Kautsky N, Yarish C (2003) Integrated mariculture: asking the right questions. Aquaculture 226:69–90

    Article  Google Scholar 

  89. Rai LC, Kumar HD, Mohn FH, Soeder CJ (2000) Services of algae to the environmemt. J Microbiol Biotechnol 10:119–136

    Google Scholar 

  90. Lubchenco J, Petes LW (2010) The interconnected biosphere: science at the ocean’s tipping points. Oceanography 23(2):115–129

    Article  Google Scholar 

  91. Ash N, Blanco H, Brown C, Garcia K, Tomich T, Vira B, Zurek M (eds) (2010) Ecosystems and human well-being: a manual for assessment practitioners. Island Press, Washington, DC, p 288

    Google Scholar 

  92. Pang SJ, Liu F, Shan TF, Xu N, Zhang ZH, Gao SQ, Chopin T, Sun S (2010) Tracking the algal origin of the Ulva bloom in the Yellow Sea by a combination of molecular, morphological and physiological analyses. Mar Environ Res 69:207–215

    Article  CAS  Google Scholar 

  93. Vaccari DA (2009) Phosphorus: a looming crisis. Sci Am 300(6):54–59

    Article  CAS  Google Scholar 

  94. Winberg P, Ghosh D, Tapsell L (2009) Seaweed culture in integrated multi-trophic aquaculture: nutritional benefits and systems for Australia. Rural Industries Research and Development Corporation, RIRDC Publication No 09/005

    Google Scholar 

  95. Lee B (2010) Cultivated seaweed and seaweed industry development in Australia. Rural Industries Research and Development Corporation – RIRDC. Publication No. 10/164, Project No. PRJ-004681, p 39. ISBN 978-1-74254-131-0

    Google Scholar 

  96. Craigie JS, Shacklock PF (1995) Culture of Irish Moss. In: Boghen AD (ed) Cold water aquaculture in Atlantic Canada. The Canadian Institute for Research on Regional Development, Moncton, pp 365–390

    Google Scholar 

  97. Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, Cambridge, p 366

    Book  Google Scholar 

  98. Rheault RB, Ryther JH (1983) Growth, yield and morphology of Ascophyllum nodosum (Phaeophyta) under continuous and intermittent seawater spray culture regimes. J Phycol 19:252–254

    Article  Google Scholar 

  99. Pickering TD, Gordon ME, Tong LJ (1995) A preliminary trial of a spray culture technique from growing the agarophyte Gracilaria chilensis (Gracilariales, Rhodophyta). Aquaculture 130:43–49

    Article  Google Scholar 

  100. Ugarte RA, Craigie JS, Critchley AT (2010) Fucoid flora of the rocky intertidal of the Canadian Maritimes: implications for the future with rapid climate change. In: Israel A, Einav R, Seckbach J (eds) Seaweeds and their role in globally changing environments, vol 15, Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer, Dordrecht, pp 73–90. ISBN 978-90-481-8568-9

    Chapter  Google Scholar 

  101. Ugarte R (2010) An evaluation of the mortality of the brown seaweed Ascophyllum nodosum (L.) Le Jol. produced by cutter rake harvests in southern New Brunswick, Canada. J Appl Phycol. doi:10.1007/s10811-010-9574-y

    Google Scholar 

  102. Cock MJ, Sterck L, Rouzé P, Scornet D, Allen AE, Amoutzias G, Anthouard V, Artiguenave F, Aury J-M, Badger JH, Beszteri B, Billiau K, Bonnet E, Bothwell JH, Bowler C, Boyen C, Brownlee C, Carrano CJ, Charrier B, Cho GY, Coelho SM, Collén J, Corre E, Da Silva C, Delage L, Delaroque N, Dittami SM, Doulbeau S, Elias M, Farnham G, Gachon CMM, Gschloessl B, Heesch S, Jabbari K, Jubin C, Kawai H, Kimura K, Kloareg B, Küpper FC, Lang D, Le Bail A, Leblanc C, Lerouge P, Lohr M, Lopez PJ, Martens C, Maumus F, Michel G, Miranda-Saavedra D, Morales J, Moreau H, Motomura T, Nagasato C, Napoli CA, Nelson DR, Nyvall-Collén P, Peters AF, Pommier C, Potin P, Poulain J, Quesneville H, Read B, Rensing SA, Ritter A, Rousvoal S, Samanta M, Samson S, Schroeder DC, Ségurens B, Strittmatter M, Tonon T, Tregear JW, Valentin K, von Dassow P, Yamagishi T, Van de Peer Y, Wincker P (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621

    Article  CAS  Google Scholar 

  103. Burri S (2009) Concepção de um alimento funcional à base de legumes e algas para consumo infantil. Master thesis, Universidade Católica Portuguesa. Escola Superior de Biotecnologia. Porto, Portugal, p 83 (in portuguese)

    Google Scholar 

Books and Reviews

  • Barrington K, Chopin T, Robinson S (2009) Integrated multi-trophic aquaculture (IMTA) in marine temperate waters. In: Soto D (ed) Integrated aquaculture: a global review. FAO Fisheries and Aquaculture Technical Paper. No. 529. FAO, Rome, pp 7–46

    Google Scholar 

  • Buschmann AH, Hernández-González MC, Aranda C, Chopin T, Neori A, Halling C, Troell M (2008) Mariculture waste management. In: Jørgensen SE, Fath BD (eds) Ecological engineering, vol 3 of encyclopedia of ecology, 5 vols. Elsevier, Oxford, pp 2211–2217

    Chapter  Google Scholar 

  • Critchley AT, Ohno M (eds) (1997/2001). Interactive, computer-based, CD-ROM “Cultivation and farming of marine plants”. Expert Centre for Taxonomic Identification (ETI), University of Amsterdam Netherlands. ISBN: 90-75000-31-6, http://www.eti.uva.nl

  • Critchley AT, Ohno M, Largo D (2006) World seaweed resources: an authoritative reference system, A multimedia, interactive DVD ROM. ETI Bioinformatics Publishers, Univ, Amsterdam. ISBN: 90-75000-80-4

    Google Scholar 

  • Fei XG, Lu S, Bao Y, Wilkes R, Yarish C (1998) Seaweed cultivation in China. World Aquac 29(4):22–24

    Google Scholar 

  • Fleurence J (1999) Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Technol 10:25–28

    Article  CAS  Google Scholar 

  • Friedlander M (2008) Israeli R&D activities in seaweed cultivation. Isr J Plant Sci 56:15–28

    Article  CAS  Google Scholar 

  • He P, Xu S, Zhang H, Wen S, Dai Y, Lin S, Yarish C (2008) Bioremediation efficiency in the removal of dissolved inorganic nutrients by the red seaweed, Porphyra yezoensis, cultivated in the open sea. Water Res 42:1281–1289

    Article  CAS  Google Scholar 

  • Lembi CA, Waaland R Jr (eds) (1988) Algae and human affairs. Cambridge University Press, London, p 590

    Google Scholar 

  • Nisizawa L (2002) Seaweeds Kaiso: bountiful harvests from the sea. Japan Seaweed Association, Kochi, p 106

    Google Scholar 

  • Phang SW, Critchley AT, Ang PO (eds) (2006) Advances in seaweed cultivation and utilisation in Asia. University of Malaya Maritime Research Centre, Kuala Lumpur, p 177

    Google Scholar 

  • Sahoo D, Yarish C (2005) Mariculture of seaweeds. In: Andersen R (ed) Phycological methods: algal culturing techniques, chapter 15. Academic, New York, pp 219–237

    Google Scholar 

  • Seckbach J, Chapman DJ (eds) (2010) Red algae in the genomic age, vol 13, Cellular origin, life in extreme habitats and astrobiology. Springer, New York, p 486

    Google Scholar 

  • Sun S, Wang F, Li CL, Qin S, Zhou MJ, Ding LP, Pang SJ, Duan DL, Wang GC, Yin BS, Yu RC, Jiang P, Liu ZL, Zhang GT, Fei XG, Zhou M (2008) Emerging challenges: massive green algal blooms in the Yellow Sea. Nature Precedings hdl:10101/npre.2008.2266.1

    Google Scholar 

  • Titlyanov EA, Titlyanova TV (2010) Seaweed cultivation: methods and problems. Russ J Mar Biol 36:227–242

    Article  Google Scholar 

  • Yuan YV, Bone DE, Carrington MF (2005) Antioxidant activity of dulse (Palmaria palmata) extract evaluated in vitro. Food Chem 91:485–494

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R. Pereira is sponsored by a fellowship from the Portuguese Foundation for Science and Technology (FCT) through program POCI 2010, with the support of FEDER and FSE(SFRH/BPD/36451/2007). Support to C. Yarish was provided by the Connecticut Sea Grant (DOC/NOAA/Ocean & Atmospheric Research Contract No. NA10OAR4170095); the Department of Energy’s NETL Program, FOA# 0000015 to Gas Technology Institute; NOAA-SBIR Phase I (Ocean Approved, LLC, DOC/National Oceanic and Atmospheric Administration Award/Contract #: AG100206); and National Fish and Wildlife Foundation (contract ##24266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Pereira, R., Yarish, C., Critchley, A.T. (2012). Seaweed Aquaculture for Human Foods in Land-Based and IMTA Systems. In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_189

Download citation

Publish with us

Policies and ethics