Skip to main content
Log in

Towards genetic improvement of commercially important microalga Haematococcus pluvialis for biotech applications

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Haematococcus pluvialis is a unicellular green alga which produces a ketocarotenoid, astaxanthin which has pharmaceutical and nutraceutical applications owing to its high antioxidant activity. Biotechnological approaches such as genetic transformation methods (Agrobacterium-mediated) and cloning strategies, are essential to improve/regulate this ketocarotenoid in Haematococcus. For this studies are necessary to improve Haematococcus through biotechnological means. In this connection, a suitable cocultivation medium for Haematococcus and Agrobacterium tumefaciens was standardized and different antibiotics were screened. Among the cocultivation media viz Z8, Bold’s Basal Medium, Tris Acetate Phosphate Z8 with 0.5% mannitol and BBM and Z8 with half strength LB TAP medium was found suitable for growth of both the alga Haematococcus and Agrobacterium. For the different antibiotics screened to identify the sensitivity of algae, hygromycin at more than 2 mg L−1 showed lethal effect which can be used as a selectable marker gene in genetic transformation, whereas cefotaxime and augmentin showed no effect up to 2,000 mg L−1. The growth of algae was higher in solid selection medium when compared to the liquid selection medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Berthold P, Schmitt R, Mages W (2002) An engineered Streptomyces hygroscopicus aph 7″ gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist 153:401–412 doi:10.1078/14344610260450136

    Article  PubMed  CAS  Google Scholar 

  • Boussiba S, Vonshak A (1991) Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol 32:1077–1082

    CAS  Google Scholar 

  • Brown LE, Sprecher SL, Keller LR (1991) Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation. Mol Cell Biol 11:2328–2332

    PubMed  CAS  Google Scholar 

  • Dawson HN, Burlingame R, Cannons AC (1997) Stable transformation of Chlorella: rescue of nitrate reductase-deficient mutants with the nitrate reductase gene. Curr Microbiol 35:356–362 doi:10.1007/s002849900268

    Article  PubMed  CAS  Google Scholar 

  • Goodwin TW (1980) The biochemistry of the carotenoids. Vol I. Plants Eds Chapman and Hall, London, p 377

  • Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216 doi:10.1016/S0167-7799(03)00078-7

    Article  PubMed  CAS  Google Scholar 

  • Harris EH (1989) The Chlamydomonas source book: a comprehensive guide to biology and laboratory use. Academic, San Diego, USA

    Google Scholar 

  • Higuera-Ciapara I, Felix-Valenzuela I, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46:185–196 doi:10.1080/10408690590957188

    Article  PubMed  CAS  Google Scholar 

  • Kumar SV, Rajam MV (2007) Induction of Agrobacterium tumefaciens vir genes by the green alga, Chlamydomonas reinhardtii. Curr Sci 92:1727–1729

    CAS  Google Scholar 

  • Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga—Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166:731–738 doi:10.1016/j.plantsci.2003.11.012

    Article  CAS  Google Scholar 

  • Ladygin VG (2004) Efficient transformation of mutant cells of Chlamydomonas reinhardtii by electroporation. Process Biochem 39:1685–1691 doi:10.1016/j.procbio.2003.07.001

    Article  CAS  Google Scholar 

  • Lagarde D, Beuf L, Vermaas W (2000) Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystic sp. Strain PCC 6803. Appl Environ Microbiol 66:64–72

    Article  PubMed  CAS  Google Scholar 

  • Lin JJ, Ma J, Garcia-Assad N, Kuo J (1996) Hygromycin as an efficient antibiotic for the selection of transgenic plants. Focus 18:47–49

    Google Scholar 

  • Maruyama M, Horakova I, Honda H, Xing X, Shiragami N, Unno H (1994) Introduction of foreign DNA into Chlorella saccharophila by electroporation. Biotechnol Tech 8:821–826 doi:10.1007/BF00152891

    Article  CAS  Google Scholar 

  • Ortiz JPA, Reggiardo MI, Ravizzini RA, Altabe SG, Cervigni GDL, Spitteler MA, Morata MM, Elias FE, Vellegos RH (1996) Hygromycin resistance as an efficient selectable marker for wheat stable transformation. Plant Cell Rep 15:877–881 doi:10.1007/BF00231579

    Article  CAS  Google Scholar 

  • Schell J, Herrera-Estrella L, Zambryski P, DeBlock M, Joos H, Willmitzer L, Eches P, Rosahl S, Van Montagu M (1984) Genetic engineering of plants. In: Schell JS, Starlinger P (eds) The impact of gene transfer technique in eukaryotic cell biology. Springer, Berlin, pp 73–90

    Google Scholar 

  • Schiedlmeier B, Schmitt R, Muller W, Kirk MM, Gruber H, Mages W, Kirk DL (1994) Nuclear transformation of Volvox carteri. Proc Natl Acad Sci U S A 91:5080–5084 doi:10.1073/pnas.91.11.5080

    Article  PubMed  CAS  Google Scholar 

  • Sivonen K, Kononen K, Esala AL, Niemela SI (1989) Toxicity and isolation of cyanobacterium Nodularia spumigena from the southern Baltic sea in 1986. Hydrobiologia 185:3–8 doi:10.1007/BF00006062

    Article  CAS  Google Scholar 

  • Steinbrenner J, Sandmann G (2006) Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl Environ Microbiol 72:7477–7484 doi:10.1128/AEM.01461-06

    Article  PubMed  CAS  Google Scholar 

  • Teng C, Qin S, Liu J, Yu D, Liang C, Tseng C (2002) Transient expression of lacZ in bombarded unicellular green alga Haematococcus pluvialis. J Appl Phycol 14:495–500 doi:10.1023/A:1022314815045

    Article  Google Scholar 

  • Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) Comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789 doi:10.1007/s00299-004-0892-x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. V. Prakash, Director, Central Food Technological Research Institute for his support to carry out this work and acknowledge the Council for Scientific and Industrial Research and Department of Science and Technology for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Sarada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kathiresan, S., Sarada, R. Towards genetic improvement of commercially important microalga Haematococcus pluvialis for biotech applications. J Appl Phycol 21, 553–558 (2009). https://doi.org/10.1007/s10811-009-9414-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-009-9414-0

Keywords

Navigation