Skip to main content
Log in

An evaluation of methods for quantifying the enzymatic degradation of red seaweed Grateloupia turuturu

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

For better exploitation of the red seaweed Grateloupia, enzymatic digestion of the thallus may be a way to increase access to metabolites of industrial interest. With this aim, we have tried to find a method to quantify the efficiency of enzymatic digestion. Vegetative algal material was treated with polysaccharidases (Onozuka R-10 cellulase, agarase, and Ultraflo L mixture). The proportion of degraded surface area was determined by microscopic measurement of the residue surface using imaging software and compared with the analysis of carbohydrates and R-phycoerythrin released in the incubation solution. Both the reducing carbohydrate concentration and percentage of degraded surface area appeared the most reliable methods to study enzymatic efficiency. The amount of solubilized total carbohydrates, and particularly that of R-phycoerythrin, showed non-specific variations, so no conclusions could be drawn. The application of this procedure to the screening of the efficient digestion of Grateloupia material demonstrated that cell walls were only partially digested by polysaccharidase enzymes alone. The Ultraflo L mixture and Onozuka R-10 cellulase produced a greater degradation of Grateloupia tissues and a higher release of reducing carbohydrates, whereas agarase did not display any specific action. Thus, the proposed procedure based on the quantification of residue surface area seems to be an accurate method to analyze enzymatic digestion. Other tests using different concentrations and combinations of enzymes are now required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrade LR, Salgado LT, Farina M, Pereira MS, Mourao PAS, Fihlo GMA (2004) Ultrastructure of acidic polysaccharides from the cell walls of brown algae. J Struct Biol 145:216–225

    Article  PubMed  CAS  Google Scholar 

  • Barbarino E, Lourenço SO (2005) An evaluation of a method for extraction and quantification of protein from marine macro- and microalgae. J Appl Phycol 17:447–460

    Article  CAS  Google Scholar 

  • Beer S, Eshel A (1985) Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Aust J Mar Freshw Res 36:785–792

    Article  CAS  Google Scholar 

  • Chattopadhyay K, Mateu CG, Mandal CG, Pujol CA, Damonte EB, Ray B (2007) Galactan sulfate of Grateloupia indica: isolation, structural features and antiviral activity. Phytochemistry 68:1428–1435

    Article  PubMed  CAS  Google Scholar 

  • Chen Y-C, Chiang YM (1994) Development of protoplasts from Grateloupia sparsa and G. filicina (Halymeniaceae, Rhodophyta). Bot Mar 37:361–366

    Article  Google Scholar 

  • Cheney D, Mar E, Saga N, van der Meer J (1986) Protoplast isolation and cell division in the agar-producing seaweed Gracilaria (Rhodophyta). J Phycol 22:238–243

    Google Scholar 

  • Craigie JS (1990) Cell walls. In: Cole KM, Sheath RG (eds) Biology of the Red Algae. Cambridge University Press, Cambridge, pp 221–257

    Google Scholar 

  • Deniaud E, Fleurence J, Lahaye M (2003a) Preparation and chemical characterization of cell wall fractions enriched in structural proteins from Palmaria palmata (Rhodophyta). Bot Mar 46:366–377

    Article  CAS  Google Scholar 

  • Deniaud E, Quemener B, Fleurence J, Lahaye M (2003b) Structural studies of the mix-linked β-(1→3)/β-(1→4)-D-xylans from the cell wall of Palmaria palmata (Rhodophyta). Int J Biol Macromol 33:9–18

    Article  PubMed  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Duncan WAM, Manners DJ, Ross AG (1956) Enzyme systems in marine algae. The carbohydrase activities of unfractionated extracts of Cladophora rupestris, Laminaria digitata, Rhodymenia palmata and Ulva lactuca. Biochem J 63:44–51

    PubMed  CAS  Google Scholar 

  • Farias WRL, Valente A-P, Pereira MS, Mourano PAS (2000) Structure and anticoagulant activity of sulfated galactans. J Biol Chem 275:29299–29307

    Article  PubMed  CAS  Google Scholar 

  • Fleurence J (1999) The enzymatic degradation of algal cell walls: a useful approach for improving protein accessibility? J Appl Phycol 11:313–314

    Article  CAS  Google Scholar 

  • Fleurence J (2003) R-phycoerythrin from red macroalgae: strategies for extraction and potential application in biotechnology. Appl Biotech Food Sci Pol 1:63–68

    CAS  Google Scholar 

  • Fleurence J (2004) Seaweed proteins. In: Yada RY (ed) Protein food processing. Woodhead Publishing, Cambridge, pp 197–213

    Google Scholar 

  • Fleurence J, Massiani L, Guyader O, Mabeau S (1995) Use of enzymatic cell wall degradation for improvement of protein extraction from Chondrus crispus, Gracilaria verrucosa and Palmaria palmata. J Appl Phycol 7:393–397

    Article  CAS  Google Scholar 

  • Fleurence J, Antoine E, Luçon M (2001) Method for extracting and improving digestibility of Palmaria palmata proteins. PCT WO 02/07528

  • Goulard F, Diouris M, Quere G, Deslandes E, Floc’h J-Y (2001) Salinity effects on NDP-sugars, floridoside, starch, and carrageenan yield, and UDP-glucose-pyrophosphorylase - epimerase activities of cultivated Solieria chordalis. J Plant Physiol 158:1387–1394

    Article  CAS  Google Scholar 

  • Jam M, Flament D, Allouch J, Potin P, Thion L, Kloareg B, Czjzek M, Helbert W, Michel G, Barbeyron T (2005) The endo-β-agarases AgaA and AgaB from the marine bacterium Zobellia galactanivorans: two paralogue enzymes with different molecular organizations and catalytic behaviours. Biochem J 385:703–713

    Article  PubMed  CAS  Google Scholar 

  • Joubert Y, Fleurence J (2005) DNA isolation protocol for seaweeds. Plant Mol Biol Rep 23:197a–197g

    Article  Google Scholar 

  • Kasai N, Konishi A, Iwai K, Maeda G (2006) Efficient digestion and structural characteristics of cell walls of coffee beans. J Agric Food Chem 54:6336–6342

    Article  PubMed  CAS  Google Scholar 

  • Kidby DK, Davidson DJ (1973) A convenient ferricyanide estimation of reducing sugars in the nanomole range. Anal Biochem 55:321–325

    Article  PubMed  CAS  Google Scholar 

  • Kloareg B, Quatrano RS (1988) Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol Ann Rev 26:259–315

    Google Scholar 

  • Lahaye M, Vigouroux J (1992) Liquefaction of dulse (Palmaria palmata (L.) Kuntze) by a commercial enzyme preparation and a purified endo-β-1,4-D-xylanase. J Appl Phycol 4:329–337

    Article  CAS  Google Scholar 

  • Mecozzi M, Amici M, Pietrantonio E, Acquistucci R (1999) Ultrasound-assisted analysis of total carbohydrates in environmental and food samples. Ultrason Sonochem 6:133–139

    Article  PubMed  CAS  Google Scholar 

  • Mishima D, Tateda M, Ike M, Fujita M (2006) Comparative study of chemical pretreatments to accelerate enzymatic hydrolysis of aquatic macrophyte biomass used in water purification processes. Bioresour Technol 97:2166–2172

    Article  PubMed  CAS  Google Scholar 

  • Morgan KC, Wright JLC, Simpson FJ (1980) Review of chemical constituents of the red alga Palmaria palmata (Dulse). Econ Bot 34:27–50

    CAS  Google Scholar 

  • Nikolaeva EV, Usov AI, Sinitsyn AP, Tambiev AH (1999) Degradation of agarophytic red algal cell wall components by new crude enzyme preparations. J Appl Phycol 11:385–389

    Article  CAS  Google Scholar 

  • Pérez-Lloréns JL, Benitez E, Vergara JJ, Berges JA (2003) Characterization of proteolytic enzyme activities in macroalgae. Eur J Phycol 38:55–64

    Article  Google Scholar 

  • Simon C, Ar Gall E, Deslandes E (2001) Expansion of the red alga Grateloupia doryphora along the coasts of Brittany (France). Hydrobiologia 443:23–29

    Article  Google Scholar 

  • Sorensen HR, Meyer AS, Pedersen S (2003) Enzymatic hydrolysis of water-soluble wheat arabinoxylan. 1. Synergy between α-L-arabinofuranosidases, endo-1,4-β-xylanases, and β-xylosidase activities. Biotechnol Bioeng 81:726–731

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Fleurence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denis, C., Le Jeune, H., Gaudin, P. et al. An evaluation of methods for quantifying the enzymatic degradation of red seaweed Grateloupia turuturu . J Appl Phycol 21, 153–159 (2009). https://doi.org/10.1007/s10811-008-9344-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-008-9344-2

Keywords

Navigation