Skip to main content
Log in

In Situ Renewal of Working Surfaces of Solid Indicator Electrodes and Their Use in Electroanalysis

  • Articles
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The design of a device for the rapid regeneration of the indicator electrode surface in a test solution is discussed. The results of testing this device are presented. The device allows obtaining reproducible areas and properties of the surfaces of solid indicator electrodes by mechanically cutting 0.1–5-µm surface layers. The best reproducibility of these parameters is attained when a hexanite-R cutter is used. The serviceability of the cutter is more than 105 cuts. The high-quality renewal of electrode surfaces is achieved by cutting a 4– 5-µm layer of metallic (Pt, Ag, Au, Cu, Cd, Zn, Co, Ni, etc.) electrodes and a 0.1–1.5-µm layer of graphite and graphite-based electrodes. Optimum tool angles of the cutter for all types of solid electrodes are selected. Long-term tests of the developed technique for the mechanical renewal of electrode surface confirm that the electrode surface area is well reproducible in the series of 104 measurements of the analytical signal (RSD = 0.2–0.6%). Examples are given that point to the enhancement of the electrochemical activity of the surfaces of some electrodes renewed in situ in a solution without their exposure to air. It is shown that the mechanical regeneration of the electrode surface in the solution is the main condition for depositing metals under high-voltage (up to 1000 V) conditions for electroaccumulation. The advantages of the proposed technique are exemplified by determining the concentrations of cations, anions, and some organic substances by direct and stripping voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kryukova, T.A., Sinyukova, S.I., and Aref'eva, T.V., Polyarograficheskii analiz (Polarographic Analysis), Moscow: GKhI, 1959.

    Google Scholar 

  2. Brainina, Kh.Z., Neiman, E.Ya., and Slepushkin, V.V., Inversionnye vol'tamperometricheskie metody (Stripping Voltammetric Methods), Moscow: Khimiya, 1988.

    Google Scholar 

  3. Stock, J.T. and Sapio, J.P., J. Electrochem. Soc., 1973, vol. 120, no.10, p. 1331

    CAS  Google Scholar 

  4. Havel, A., Hrabankova, E., and Dolezal, J., Chem. Anal., 1972, vol. 17, no.3, p. 623

    CAS  Google Scholar 

  5. Bond, A.M., Polarographic Methods in Analytical Chemistry, New York: Dekker, 1980.

    Google Scholar 

  6. Herschenhart, E., Mc. Creery, R.L., and Knight, R.D., Anal. Chem., 1984, vol. 56, no.12, p. 2256.

    Google Scholar 

  7. Miwa, T. and Mizuike, A., Mikrochim. Acta, 1970, vol. 3, p. 452.

    Google Scholar 

  8. Budnikov, G.K., Zavod. Lab., 1997, no. 4, p. 1.

  9. Kletenik, Yu.B., Bek, R.Yu., Kiryushov, V.N., Polyakin, L.Yu., and Burenkov, I.I., Zh. Anal. Khim., 1982, vol. 37, no.3, p. 534.

    CAS  Google Scholar 

  10. Kletenik, Yu.B., Bek, R.Yu., Kiryushov, V.N., Polyakin, L.Yu., and Zamyatin, A.P., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 1985, no. 2, issue 1, p. 85.

  11. Kletenik, Yu.B., Bek, R.Yu., Polyakin, L.Yu., and Zamyatin, A.P., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 1985, no. 2, issue 1, p. 93.

  12. Kletenik, Yu.B. and Polyakin, L.Yu., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 1985, no. 5, issue 2, p. 58.

  13. Kenzin, V.I., Novitskii, S.M., Polumordvinov, I.S., and Yur'ev, O.A., Prib. Sist. Upr., 1993, no. 5, p. 31.

  14. Kletenik, Yu.B. and Aleksandrova, T.P., Zh. Anal. Khim., 1997, vol. 52, no.7, p. 752 [J. Anal. Chem. (Engl. Transl.), vol. 52, no. 7, p. 680].

    Google Scholar 

  15. Kletenik, Yu.B. and Aleksandrova, T.P., Zh. Anal. Khim., 1997, vol. 52, no.3, p. 280 [J. Anal. Chem. (Engl. Transl.), vol. 52, no. 3, p. 248].

    Google Scholar 

  16. Tarasova, V.A. and Kletenik, Yu.B., Zavod. Lab., 1997, no. 8, p. 7.

  17. Aleksandrova, T.P. and Kletenik, Yu.B., Zh. Anal. Khim., 1994, vol. 49, no.6, p. 615.

    CAS  Google Scholar 

  18. Aleksandrova, T.P. and Kletenik, Yu.B., Zh. Anal. Khim., 1998, vol. 53, no.7, p. 744 [J. Anal. Chem. (Engl. Transl.), vol. 53, no. 7, p. 654].

    Google Scholar 

  19. Skvortsova, L.I., Kiryushov, V.N., and Tarasova, V.A., Zh. Anal. Khim., 1999, vol. 54, no.6, p. 638 [J. Anal. Chem. (Engl. Transl.), vol. 54, no. 6, p. 562].

    Google Scholar 

  20. Tarasova, V.A., Kiryushov, V.N., and Bek, R.Yu., Zh. Anal. Khim., 2003, vol. 58, no.6, p. 628 [J. Anal. Chem. (Engl. Transl.), vol. 58, no. 6, p. 565].

    Google Scholar 

  21. Kletenik, Yu.B., Aleksandrova, T.P., Tarasova, V.A., Skvortsova, L.I., Kiryushov, V.N., and Bek, R.Yu., Zh. Anal. Khim., 1999, vol. 54, no.1, p. 56 [J. Anal. Chem. (Engl. Transl.), vol. 54, no. 1, p. 44].

    Google Scholar 

  22. Kletenik, Yu.B., Tarasova, V.A., Aleksandrova, T.P., Skvortsova, L.I., Kiryushov, V.N., Zamyatin, A.P., and Bek, R.Yu., Zh. Anal. Khim., 1999, vol. 54, no.1, p. 51 [J. Anal. Chem. (Engl. Transl.), vol. 54, no. 1, p. 49].

    Google Scholar 

  23. Bek, R.Yu., Kiryushov, V.N., Skvortsova, L.I., Aleksandrova, T.P., and Tarasova, V.A., Zh. Anal. Khim., 2000, vol. 55, no.11, p. 1190 [J. Anal. Chem. (Engl. Transl.), vol. 55, no. 11, p. 1069].

    Google Scholar 

  24. Bek, R.Yu., Skvortsova, L.I., Kiryushov, V.N., Aleksandrova, T.P., and Tarasova, V.A., Zavod. Lab., 2001, vol. 67, no.2, p. 3.

    CAS  Google Scholar 

  25. Skvortsova, L.I. and Kiryushov, V.N., Zh. Anal. Khim., 2000, vol. 55, no.5, p. 582 [J. Anal. Chem. (Engl. Transl.), vol. 55, no. 5, p. 461].

    Google Scholar 

  26. Aleksandrova, T.P., Skvortsova, L.I., Kiryushov, V.N., and Bek, R.Yu., Zh. Anal. Khim., 1999, vol. 54, no.8, p. 851 [J. Anal. Chem. (Engl. Transl.), vol. 54, no. 8, p. 756].

    Google Scholar 

  27. Tarasova, V.A., Kiryushov, V.N., and Bek, R.Yu., Zh. Anal. Khim., 1999, vol. 54, no.11, p. 1201 [J. Anal. Chem. (Engl. Transl.), vol. 54, no. 11, p. 1065].

    Google Scholar 

  28. Kiryushov, V.N. and Kletenik, Yu.B., Zavod. Lab., 1997, vol. 63, no.2, p. 1.

    CAS  Google Scholar 

  29. Kiryushov, V.N., Zavod. Lab., 1998, vol. 64, no.11, p. 11.

    CAS  Google Scholar 

  30. Kiryushov, V.N. and Kletenik, Yu.B., Zh. Prikl. Khim., 1997, vol. 70, no.10, p. 1626.

    Google Scholar 

  31. Kiryushov, V.N., Shustova, L.I., and Kletenik, Yu.B., Gal'vanotekh. Obrab. Poverkhn., 1992, vol. 1, no.1, p. 75.

    Google Scholar 

  32. Kiryushov, V.N., Kopylova, N.S., and Kletenik, Yu.B., Zavod. Lab., 1995, vol. 61, no.12, p. 8.

    CAS  Google Scholar 

  33. Kiryushov, V.N. and Kletenik, Yu.B., Zavod. Lab., 1997, vol. 63, no.12, p. 13.

    CAS  Google Scholar 

  34. Kiryushov, V.N. and Kopylova, N.S., Zavod. Lab., 1998, vol. 64, no.8, p. 3.

    CAS  Google Scholar 

  35. Tarasova, V.A., Kopylova, N.S., and Kletenik, Yu.B., Gal'vanotekh. Obrab. Poverkhn., 1993, vol. 2, no.3, p. 62.

    CAS  Google Scholar 

  36. Skvortsova, L.I. and Medvedev, A.Zh., Zh. Prikl. Khim., 2003, vol. 76, no.6, p. 942.

    Google Scholar 

  37. Tarasova, V.A. and Kletenik, Yu.B., Gal'vanotekh. Obrab. Poverkhn., 1992, vol. 1, nos.5–6, p. 53.

    Google Scholar 

  38. Kletenik, Yu.B., Tarasova, V.A., and Bek, R.Yu., Zh. Anal. Khim., 1987, vol. 42, no.5, p. 891.

    CAS  Google Scholar 

  39. Skvortsova, L.I. and Kiryushov, V.N., Zh. Anal. Khim., 2002, vol. 57, no.3, p. 304 [J. Anal. Chem. (Engl. Transl.), vol. 57, no. 3, p. 255].

    Google Scholar 

  40. Tarasova, V.A. and Kletenik, Yu.B., Zavod. Lab., 1998, vol. 64, no.2, p. 9.

    CAS  Google Scholar 

  41. Kletenik, Yu.B., Tarasova, V.A., Aleksandrova, T.P., Skvortsova, L.I., and Kiryushov, V.N., Khim. Interes. Ust. Razv., 1997, vol. 5, no.4, p. 401.

    Google Scholar 

  42. Bek, R.Yu. and Zamyatin, A.P., Khim. Interes. Ust. Razv., 1997, no. 5, p. 479.

  43. Kletenik, Yu.B., Bek, R.Yu., Zamyatin, A.P., Matveev, V.E., et al., USSR Inventor's Certificate No. 1206672, Byull. Izobret., 1986, no. 3.

  44. Kletenik, Yu.B. and Navrotskaya, V.A., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 1987, no. 2, p. 105.

  45. Galus, Z., Teoretyczne podstawy electroanalizy chemicznej (Theoretical Principles of Electrochemical Analysis), Warsaw: Panstwowe Wydawnictwo Naukowe, 1971. Translated under the title Teoreticheskie osnovy elektrokhimicheskogo analiza, Moscow: Mir, 1974.

    Google Scholar 

  46. Shimizu, K., Aoki, K., and Osteryoung, R.A., J. Electroanal. Chem., 1981, vol. 129, nos.1–2, p. 159.

    Google Scholar 

  47. Gorokhovskii, V.M. and Ismagilova, F.K., Zh. Anal. Khim., 1999, vol. 54, no.6, p. 638.

    Google Scholar 

  48. Power, G.P., Ritchie, I.M., and Wylie, M.J., Electrochim. Acta, 1981, vol. 26, no.11, p. 1633.

    Article  CAS  Google Scholar 

  49. Raikova, N.S., Zakharov, M.S., and Guntsov, A.V., Zh. Anal. Khim., 1988, vol. 43, no.4, p. 666.

    CAS  Google Scholar 

  50. Rice, R., Allred, C., and Creery, R., J. Electroanal. Chem., 1989, vol. 263, no.1, p. 163.

    Article  CAS  Google Scholar 

  51. Pnev, V.V., Zhikharev, Yu.N., and Khaidukova, N.I., Zh. Anal. Khim., 1982, vol. 37, no.11, p. 1944.

    CAS  Google Scholar 

  52. Miller, O.H., Chem. Rev., 1939, vol. 24, no.3, p. 95.

    Google Scholar 

  53. Badavskaya, L.A. and Kuzovnikova, I.A., in Issledovanie furanovykh soedinenii i sintezy na ikh osnove (Study of Furan Compounds and Syntheses on Their Basis), 1969, vol. 23, no.6, p. 57.

    Google Scholar 

  54. Izumi, T., Watanabe, J., and Yokoyama, Y., J. Electroanal. Chem., 1991, vol. 303, nos.1–2, p. 151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Analiticheskoi Khimii, Vol. 60, No. 12, 2005, pp. 1284–1295.

Original Russian Text Copyright © 2005 by Skvortsova, Aleksandrova, Tarasova, Kiryushov, Zamyatin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skvortsova, L.I., Aleksandrova, T.P., Tarasova, V.A. et al. In Situ Renewal of Working Surfaces of Solid Indicator Electrodes and Their Use in Electroanalysis. J Anal Chem 60, 1144–1154 (2005). https://doi.org/10.1007/s10809-005-0258-8

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10809-005-0258-8

Keywords

Navigation