Skip to main content
Log in

Invariant recording of elasticity theory equations

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

An invariant (with respect to rotations) formalization of equations of linear and nonlinear elasticity theory is proposed. An equation of state (in the form of a convex generating potential) for various crystallographic systems is written. An algebraic approach is used, which does not require any geometric constructions related to the analysis of symmetry in crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Godunov and E. I. Romensky, Elements of Continuum Mechanics and Conservation Laws, Kluwer Acad. Publ., Dordrecht (2003).

    MATH  Google Scholar 

  2. S. K. Godunov, “The equations of elasticity with dissipation as a nontrivial example of thermodynamically consistent hyperbolic equations,” J. Hyperbol. Differ. Eq., 1, No. 2, 235–249 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  3. S. P. Kiselev, Mechanics of Continuous Media [in Russian], Novosibirsk State Technical University, Novosibirsk (1997).

    Google Scholar 

  4. G. Leibfried and N. Brauer, Point Defects in Metals. Introduction to the Theory, Springer, Heidelberg (1978).

    Google Scholar 

  5. S. K. Godunov and T. Yu. Mikhailova, Presentations of Rotation Groups and Spherical Functions [in Russian], Nauchnaya Kniga, Novosibirsk (1998).

    Google Scholar 

  6. S. K. Godunov and V. M. Gordienko, “Clebsch-Gordan coefficients for various choices of the bases of unitary and orthogonal presentations of the SU(2) and SO(3) groups,” Sib. Mat. Zh., 45, No. 3, 540–557 (2004).

    MATH  MathSciNet  Google Scholar 

  7. S. V. Selivanova, “Elements of the theory of presentations of the group of rotations and their application in the elasticity theory,” MA Dissertation, Novosibirsk (2007).

  8. S. K. Godunov and V. M. Gordienko, “Complicated structures of Galilean-invariant conservation laws,” J. Appl. Mech. Tech. Phys., 43, No. 2, 175–189 (2002).

    Article  MathSciNet  Google Scholar 

  9. N. I. Ostrosablin, “On the structure of the elastic tensor and the classification of anisotropic materials,” J. Appl. Mech. Tech. Phys., 27, No. 4, 600–607 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  10. R. M. Garipov, “Hooke’s law for single crystals,” Preprint, Inst. Hydrodynamics, Sib. Div., Russ. Acad. of Sci., Novosibirsk (2005).

    Google Scholar 

  11. B. I. Delone, N. Padurov, and A. D. Aleksandrov, Mathematical Fundamentals of the Structural Analysis of Crystals [in Russian], Gostekhteorizdat, Moscow (1934).

    Google Scholar 

  12. N. I. Ostrosablin, “On invariants of the fourth-rank tensor of elasticity moduli,” Sib. Zh. Indust. Mat., 1, No. 1, 155–163 (1998).

    MATH  MathSciNet  Google Scholar 

  13. L. D. Landau and E. M. Lifshits, Theory of Elasticity, Pergamon Press, Oxford-New York (1970).

    Google Scholar 

  14. F. I. Fedorov, Theory of Elastic Waves in Crystals [in Russian], Nauka, Moscow (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Selivanova.

Additional information

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 5, pp. 127–142, September–October, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selivanova, S.V. Invariant recording of elasticity theory equations. J Appl Mech Tech Phy 49, 809–822 (2008). https://doi.org/10.1007/s10808-008-0101-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10808-008-0101-8

Key words

Navigation