Skip to main content
Log in

Feedback Related Negativity Amplitude is Greatest Following Deceptive Feedback in Autistic Adolescents

  • Original Paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

The purpose of this study is to investigate if feedback related negativity (FRN) can capture instantaneous elevated emotional reactivity in autistic adolescents. A measurement of elevated reactivity could allow clinicians to better support autistic individuals without the need for self-reporting or verbal conveyance. The study investigated reactivity in 46 autistic adolescents (ages 12–21 years) completing the Affective Posner Task which utilizes deceptive feedback to elicit distress presented as frustration. The FRN event-related potential (ERP) served as an instantaneous quantitative neural measurement of emotional reactivity. We compared deceptive and distressing feedback to both truthful but distressing feedback and truthful and non-distressing feedback using the FRN, response times in the successive trial, and Emotion Dysregulation Inventory (EDI) reactivity scores. Results revealed that FRN values were most negative to deceptive feedback as compared to truthful non-distressing feedback. Furthermore, distressing feedback led to faster response times in the successive trial on average. Lastly, participants with higher EDI reactivity scores had more negative FRN values for non-distressing truthful feedback compared to participants with lower reactivity scores. The FRN amplitude showed changes based on both frustration and reactivity. The findings of this investigation support using the FRN to better understand emotion regulation processes for autistic adolescents in future work. Furthermore, the change in FRN based on reactivity suggests the possible need to subgroup autistic adolescents based on reactivity and adjust interventions accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amari, S. I., Cichocki, A., & Yang, H. (1995). A new learning algorithm for blind signal separation. In Advances in neural information processing systems, 8 (NIPS).

  • Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159.

    Article  PubMed  Google Scholar 

  • Bellebaum, C., Brodmann, K., & Thoma, P. (2014). Active and observational reward learning in adults with autism spectrum disorder: Relationship with empathy in an atypical sample. Cognitive Neuropsychiatry, 19(3), 205–225.

    Article  PubMed  Google Scholar 

  • Bellebaum, C., Polezzi, D., & Daum, I. (2010). It is less than you expected: The feedback-related negativity reflects violations of reward magnitude expectations. Neuropsychologia, 48(11), 3343–3350.

    Article  PubMed  Google Scholar 

  • Berthoz, S., & Hill, E. L. (2005). The validity of using self-reports to assess emotion regulation abilities in adults with autism spectrum disorder. European Psychiatry, 20(3), 291–298.

    Article  PubMed  Google Scholar 

  • Bosl, W. J., Tager-Flusberg, H., & Nelson, C. A. (2018). EEG analytics for early detection of autism spectrum disorder: A data-driven approach. Scientific Reports, 8(1), 1–20.

    Article  Google Scholar 

  • Carver, C. S., & Harmon-Jones, E. (2009). Anger is an approach-related affect: Evidence and implications. Psychological Bulletin, 135(2), 183. https://doi.org/10.1037/a0013965

    Article  PubMed  Google Scholar 

  • Chang, C. Y., Hsu, S. H., Pion-Tonachini, L., & Jung, T. P. (2020). Evaluation of artifact subspace reconstruction for automatic artifact components removal in multi-channel EEG recordings. IEEE Transactions on Biomedical Engineering, 67(4), 1114–1121. https://doi.org/10.1109/TBME.2019.2930186

    Article  PubMed  Google Scholar 

  • Cohen, M. X., Elger, C. E., & Ranganath, C. (2007). Reward expectation modulates feedback-related negativity and EEG spectra. NeuroImage, 35(2), 968–978.

    Article  PubMed  Google Scholar 

  • Conner, C. M., Golt, J., Shaffer, R., Righi, G., Siegel, M., & Mazefsky, C. A. (2021). Emotion dysregulation is substantially elevated in autism compared to the general population: Impact on psychiatric services. Autism Research, 14(1), 169–181.

    Article  PubMed  Google Scholar 

  • Conner, C. M., White, S. W., Beck, K. B., Golt, J., Smith, I. C., & Mazefsky, C. A. (2019). Improving emotion regulation ability in autism: The emotional awareness and skills enhancement (EASE) program. Autism, 23(5), 1273–1287.

    Article  PubMed  Google Scholar 

  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.

    Article  PubMed  Google Scholar 

  • Deveney, C. M. (2019). Reward processing and irritability in young adults. Biological Psychology, 143, 1–9.

    Article  PubMed  Google Scholar 

  • Diagnostic and statistical manual of mental disorders: DSM-5. (2013) American Psychiatric Association. https://doi.org/10.1176/appi.books.9780890425596

  • Eldeeb, S., Susam, B. T., Akcakaya, M., Conner, C. M., White, S. W., & Mazefsky, C. A. (2021). Trial by trial EEG based BCI for distress versus non distress classification in individuals with ASD. Scientific Reports, 11(1), 1–13.

    Article  Google Scholar 

  • Guy, L., Souders, M., Bradstreet, L., DeLussey, C., & Herrington, J. D. (2014). Brief report: Emotion regulation and respiratory sinus arrhythmia in autism spectrum disorder. Journal of Autism and Developmental Disorders, 44(10), 2614–2620.

    Article  PubMed  Google Scholar 

  • Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F. (2006). The feedback-related negativity reflects the binary evaluation of good versus bad outcomes. Biological Psychology, 71(2), 148–154.

    Article  PubMed  Google Scholar 

  • Handy, T. C. (2005). Event-related potentials: A methods handbook. MIT press.

    Google Scholar 

  • Hauser, T. U., Iannaccone, R., Stämpfli, P., Drechsler, R., Brandeis, D., Walitza, S., & Brem, S. (2014). The feedback-related negativity (FRN) revisited: New insights into the localization, meaning and network organization. NeuroImage, 84, 159–168.

    Article  PubMed  Google Scholar 

  • Hudac, C. M., Naples, A., DesChamps, T. D., Coffman, M. C., Kresse, A., Ward, T., Mukerji, C., Aaronson, B., Faja, S., McPartland, J. C., & Bernier, R. (2021). Modeling temporal dynamics of face processing in youth and adults. Social Neuroscience, 16(4), 345–361. https://doi.org/10.1080/17470919.2021.1920050

    Article  PubMed  PubMed Central  Google Scholar 

  • Larson, M. J., South, M., Krauskopf, E., Clawson, A., & Crowley, M. J. (2011). Feedback and reward processing in high-functioning autism. Psychiatry Research, 187(1–2), 198–203.

    Article  PubMed  Google Scholar 

  • Lecavalier, L. (2006). Behavioral and emotional problems in young people with pervasive developmental disorders: Relative prevalence, effects of subject characteristics, and empirical classification. Journal of Autism and Developmental Disorders, 36(8), 1101–1114.

    Article  PubMed  Google Scholar 

  • Lord, C., Rutter, M., DiLavore, P. C., Risi, S., Gotham, K., & Bishop, S. (2012). Autism Diagnostic Observation Schedule (2nd ed.). Western Psychological Services.

    Google Scholar 

  • Mayes, S. D., Calhoun, S. L., Murray, M. J., & Zahid, J. (2011). Variables associated with anxiety and depression in children with autism. Journal of Developmental and Physical Disabilities, 23, 325–337.

    Article  Google Scholar 

  • Mazefsky, C. A., Conner, C. M., Breitenfeldt, K., Leezenbaum, N., Chen, Q., Bylsma, L. M., & Pilkonis, P. (2021a). Evidence base update for questionnaires of emotion regulation and reactivity for children and adolescents. Journal of Clinical Child & Adolescent Psychology, 50(6), 683–707. https://doi.org/10.1080/15374416.2021.1955372

    Article  Google Scholar 

  • Mazefsky, C. A., Day, T. N., Siegel, M., White, S. W., Yu, L., Pilkonis, P. A., For The, A., & Developmental Disabilities Inpatient Research, C. (2018). Development of the emotion dysregulation inventory: A PROMIS®ing method for creating sensitive and unbiased questionnaires for autism spectrum disorder. Journal of Autism and Developmental Disorders, 48(11), 3736–3746. https://doi.org/10.1007/s10803-016-2907-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazefsky, C. A., Herrington, J., Siegel, M., Scarpa, A., Maddox, B. B., Scahill, L., & White, S. W. (2013). The role of emotion regulation in autism spectrum disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 52(7), 679–688.

    Article  Google Scholar 

  • Mazefsky, C. A., & White, S. W. (2014). Emotion regulation: Concepts & practice in autism spectrum disorder. Child and Adolescent Psychiatric Clinics, 23(1), 15–24.

    Article  Google Scholar 

  • Mazefsky, C. A., Yu, L., & Pilkonis, P. A. (2021b). Psychometric properties of the emotion dysregulation inventory in a nationally representative sample of youth. Journal of Clinical Child & Adolescent Psychology, 50(5), 596–608.

    Article  Google Scholar 

  • Mazefsky, C. A., Yu, L., White, S. W., Siegel, M., & Pilkonis, P. A. (2018). The emotion dysregulation inventory: Psychometric properties and item response theory calibration in an autism spectrum disorder sample. Autism Research, 11(6), 928–941.

    Article  PubMed  PubMed Central  Google Scholar 

  • McPartland, J. C., Crowley, M. J., Perszyk, D. R., Mukerji, C. E., Naples, A. J., Wu, J., & Mayes, L. C. (2012). Preserved reward outcome processing in ASD as revealed by event-related potentials. Journal of Neurodevelopmental Disorders, 4(1), 1–9.

    Article  Google Scholar 

  • Moser, J. S., & Simons, R. F. (2009). The neural consequences of flip-flopping: The feedback-related negativity and salience of reward prediction. Psychophysiology, 46(2), 313–320.

    Article  PubMed  PubMed Central  Google Scholar 

  • Picci, G., & Scherf, K. S. (2015). A two-hit model of autism: Adolescence as the second hit. Clinical Psychological Science, 3(3), 349–371.

    Article  PubMed  Google Scholar 

  • Pion-Tonachini, L., Kreutz-Delgado, K., & Makeig, S. (2019). ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. NeuroImage, 198, 181–197.

    Article  PubMed  Google Scholar 

  • Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25.

    Article  PubMed  Google Scholar 

  • Riepl, K., Mussel, P., Osinsky, R., & Hewig, J. (2016). Influences of state and trait affect on behavior, feedback-related negativity, and P3b in the ultimatum game. PLoS ONE, 11(1), e0146358.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rutter, M., Bailey, A., & Lord, C. (2003). Social Communication Questionnaire (SCQ). Western Psychological Services, Los Angeles.

  • Samson, A. C., Hardan, A. Y., Podell, R. W., Phillips, J. M., & Gross, J. J. (2015). Emotion regulation in children and adolescents with autism spectrum disorder. Autism Research, 8(1), 9–18.

    Article  PubMed  Google Scholar 

  • Stavropoulos, K. K., & Carver, L. J. (2014). Reward anticipation and processing of social versus nonsocial stimuli in children with and without autism spectrum disorders. Journal of Child Psychology and Psychiatry, 55(12), 1398–1408.

    Article  PubMed  Google Scholar 

  • Thompson, R. A. (1994). Emotion regulation: A theme in search of definition. Monographs of the society for research in child development, 59, 25–52.

    Article  PubMed  Google Scholar 

  • Threadgill, A. H., & Gable, P. A. (2020). Revenge is sweet: Investigation of the effects of approach-motivated anger on the RewP in the motivated anger delay (MAD) paradigm. Human Brain Mapping, 41(17), 5032–5056.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research in this publication was supported by NSF IIS 1844885, DoD Grant W81XWH-18-1-0284, R01 HD079512, and the Edith L. Trees Charitable Trust.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to multiple stages of this manuscript. SWW, CAM, MA designed the study, received funding, and oversaw the research. NTR, BTS, CMC performed data collection and preprocessing. NTR, BTS, JY performed the analysis for the paper supervised by CMH, PAG, MA. PAG conceived the idea for this analysis. NTR drafted the manuscript and it was revised extensively with the help of all authors. All authors approved the final version for publication.

Corresponding author

Correspondence to Nathan T. Riek.

Ethics declarations

Conflict of interest

There are no relevant financial or non-financial competing interests to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 2, 3 and Figs. 6, 7

Table 2 Overall F(1, 44) results from simple linear regression
Fig. 6
figure 6

Mean FRN Values (Elevated EDI-Reactivity). The mean FRN values for each feedback condition with their 95% confidence intervals are shown in the figure. The elevated EDI-Reactivity subgroup has a negative FRN for all feedback conditions

Fig. 7
figure 7

Mean FRN Values (Non-Elevated EDI-Reactivity). The mean FRN values for each feedback condition with their 95% confidence intervals are shown in the figure. The non-elevated EDI-Reactivity subgroup has a positive FRN to “Correct” feedback and the most negative FRN to “Too Slow” feedback

Table 3 Clinical correlation table

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riek, N.T., Susam, B.T., Hudac, C.M. et al. Feedback Related Negativity Amplitude is Greatest Following Deceptive Feedback in Autistic Adolescents. J Autism Dev Disord (2023). https://doi.org/10.1007/s10803-023-06038-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10803-023-06038-y

Keywords

Navigation