Anderson, C. J., & Colombo, J. (2009). Larger tonic pupil size in young children with autism spectrum disorder. Developmental Psychobiology, 51, 207–211. https://doi.org/10.1002/dev.20352
Article
PubMed
PubMed Central
Google Scholar
Auyeung, B., Baron-Cohen, S., Wheelwright, S., & Allison, C. (2008). The autism spectrum quotient: Children’s version (AQ-child). Journal of Autism and Developmental Disorders, 38, 1230–1240. https://doi.org/10.1007/s10803-007-0504-z
Article
PubMed
Google Scholar
Bailey, A., et al. (1995). Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25, 63–77. https://doi.org/10.1017/s0033291700028099
Article
PubMed
Google Scholar
Baron-Cohen, S., & Wheelwright, S. (2004). The empathy quotient: An investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. Journal of Autism and Developmental Disorders, 34, 163–175. https://doi.org/10.1023/b:jadd.0000022607.19833.00
Article
PubMed
Google Scholar
Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-spectrum quotient (AQ): Evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31, 5–17. https://doi.org/10.1023/a:1005653411471
Article
PubMed
Google Scholar
Belmonte, M. K., et al. (2004). Autism as a disorder of neural information processing: Directions for research and targets for therapy. Molecular Psychiatry, 9, 646–663. https://doi.org/10.1038/sj.mp.4001499
Article
PubMed
Google Scholar
Benedetto, A., & Binda, P. (2016). Dissociable saccadic suppression of pupillary and perceptual responses to light. Journal of Neurophysiology, 115, 1243–1251. https://doi.org/10.1152/jn.00964.2015
Article
PubMed
Google Scholar
Bharadwaj, S. R., Wang, J., & Candy, T. R. (2011). Pupil responses to near visual demand during human visual development. Journal of Vision, 11, 6. https://doi.org/10.1167/11.4.6
Article
PubMed
Google Scholar
Binda, P., & Gamlin, P. D. (2017). Renewed attention on the pupil light reflex. Trends in Neurosciences, 40, 455–457. https://doi.org/10.1016/j.tins.2017.06.007
Article
PubMed
PubMed Central
Google Scholar
Binda, P., & Murray, S. O. (2015a). Keeping a large-pupilled eye on high-level visual processing. Trends in cognitive sciences, 19, 1–3. https://doi.org/10.1016/j.tics.2014.11.002
Article
PubMed
Google Scholar
Binda, P., & Murray, S. O. (2015b). Spatial attention increases the pupillary response to light changes. Journal of Vision, 15, 1. https://doi.org/10.1167/15.2.1
Article
PubMed
Google Scholar
Binda, P., Pereverzeva, M., & Murray, S. O. (2013a). Attention to bright surfaces enhances the pupillary light reflex. Journal of Neuroscience, 33, 2199–2204. https://doi.org/10.1523/JNEUROSCI.3440-12.2013
Article
PubMed
Google Scholar
Binda, P., Pereverzeva, M., & Murray, S. O. (2013b). Pupil constrictions to photographs of the sun. Journal of Vision. https://doi.org/10.1167/13.6.8
Article
PubMed
PubMed Central
Google Scholar
Binda, P., Pereverzeva, M., & Murray, S. O. (2014). Pupil size reflects the focus of feature-based attention. Journal of Neurophysiology, 112, 3046–3052. https://doi.org/10.1152/jn.00502.2014
Article
PubMed
Google Scholar
Blaser, E., Eglington, L., Carter, A. S., & Kaldy, Z. (2014). Pupillometry reveals a mechanism for the autism spectrum disorder (ASD) advantage in visual tasks. Scientific Reports, 4, 4301. https://doi.org/10.1038/srep04301
Article
PubMed
PubMed Central
Google Scholar
Bolte, S., Holtmann, M., Poustka, F., Scheurich, A., & Schmidt, L. (2007). Gestalt perception and local-global processing in high-functioning autism. Journal of Autism and Developmental Disorders, 37, 1493–1504. https://doi.org/10.1007/s10803-006-0231-x
Article
PubMed
Google Scholar
Boring, E. G. (1940). Size constancy and Emmert’s Law. The American Journal of Psychology, 53, 293–295. https://doi.org/10.2307/1417427
Article
Google Scholar
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.
Article
Google Scholar
Chen, J., Sperandio, I., & Goodale, M. A. (2018). Proprioceptive distance cues restore perfect size constancy in grasping, but not perception, when vision is limited. Current Biology, 28(927–932), e4. https://doi.org/10.1016/j.cub.2018.01.076
Article
Google Scholar
Chen, J., Sperandio, I., Henry, M. J., & Goodale, M. A. (2019). Changing the real viewing distance reveals the temporal evolution of size constancy in visual cortex. Current Biology, 29(2237–2243), e4. https://doi.org/10.1016/j.cub.2019.05.069
Article
Google Scholar
Chouinard, P. A., Noulty, W. A., Sperandio, I., & Landry, O. (2013). Global processing during the Muller-Lyer illusion is distinctively affected by the degree of autistic traits in the typical population. Experimental Brain Research, 230, 219–231. https://doi.org/10.1007/s00221-013-3646-6
Article
PubMed
Google Scholar
Chouinard, P. A., Unwin, K. L., Landry, O., & Sperandio, I. (2016). Susceptibility to optical illusions varies as a function of the autism-spectrum quotient but not in ways predicted by local-global biases. Journal of Autism and Developmental Disorders, 46, 2224–2239. https://doi.org/10.1007/s10803-016-2753-1
Article
PubMed
Google Scholar
Constantino, J. N., & Todd, R. D. (2003). Autistic traits in the general population: A twin study. Archives of General Psychiatry, 60, 524–530. https://doi.org/10.1001/archpsyc.60.5.524
Article
PubMed
Google Scholar
Cornelissen, F. W., Peters, E. M., & Palmer, J. (2002). The Eyelink Toolbox: eye tracking with MATLAB and the Psychophysics Toolbox. Behavior Research Methods, Instruments, & Computers, 34, 613–617. https://doi.org/10.3758/bf03195489
Article
Google Scholar
Daluwatte, C., Miles, J. H., Christ, S. E., Beversdorf, D. Q., Takahashi, T. N., & Yao, G. (2013). Atypical pupillary light reflex and heart rate variability in children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 43, 1910–1925. https://doi.org/10.1007/s10803-012-1741-3
Article
PubMed
PubMed Central
Google Scholar
Ebitz, R. B., & Moore, T. (2017). Selective modulation of the pupil light reflex by microstimulation of prefrontal cortex. Journal of Neuroscience, 37, 5008–5018. https://doi.org/10.1523/JNEUROSCI.2433-16.2017
Article
PubMed
Google Scholar
Fan, X., Miles, J. H., Takahashi, N., & Yao, G. (2009). Abnormal transient pupillary light reflex in individuals with autism spectrum disorders. Journal of Autism and Developmental Disorders, 39, 1499–1508. https://doi.org/10.1007/s10803-009-0767-7
Article
PubMed
Google Scholar
Fang, F., Boyaci, H., Kersten, D., & Murray, S. O. (2008). Attention-dependent representation of a size illusion in human V1. Current Biology, 18, 1707–1712. https://doi.org/10.1016/j.cub.2008.09.025
Article
PubMed
Google Scholar
Friston, K. J., Lawson, R., & Frith, C. D. (2013). On hyperpriors and hypopriors: Comment on Pellicano and Burr. Trends in cognitive sciences, 17, 1. https://doi.org/10.1016/j.tics.2012.11.003
Article
PubMed
Google Scholar
Gillberg, C., & Billstedt, E. (2000). Autism and Asperger syndrome: Coexistence with other clinical disorders. Acta Psychiatrica Scandinavica, 102, 321–330. https://doi.org/10.1034/j.1600-0447.2000.102005321.x
Article
PubMed
Google Scholar
Goodale, M., & Milner, A. D. (1992). Separate pathways for perception and action. TINS, 15, 20–25.
PubMed
Google Scholar
Gori, S., Molteni, M., & Facoetti, A. (2016). Visual illusions: An interesting tool to investigate developmental dyslexia and autism spectrum disorder. Frontiers in Human Neuroscience, 10, 175. https://doi.org/10.3389/fnhum.2016.00175
Article
PubMed
PubMed Central
Google Scholar
Gregory, R. L. (1980). Perceptions as hypotheses. Philosophical Transactions of the Royal Society B, 290, 181–197. https://doi.org/10.1098/Rstb.1980.0090
Article
Google Scholar
Happe, F. G. (1996). Studying weak central coherence at low levels: children with autism do not succumb to visual illusions. A research note. Journal of Child Psychology and Psychiatry, 37, 873–877. https://doi.org/10.1111/j.1469-7610.1996.tb01483.x
Article
PubMed
Google Scholar
Happe, F. G., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36, 5–25. https://doi.org/10.1007/s10803-005-0039-0
Article
PubMed
Google Scholar
He, D., Mo, C., Wang, Y., & Fang, F. (2015). Position shifts of fMRI-based population receptive fields in human visual cortex induced by Ponzo illusion. Experimental Brain Research, 233, 3535–3541. https://doi.org/10.1007/s00221-015-4425-3
Article
PubMed
Google Scholar
Helmholtz, H.V., & Southall, J.P.C.B. (1962). Helmholtz's treatise on physiological optics. Translated from the 3d German ed. Edited by James P. C. Southall, New York, Dover Publications
Hess, E. H., & Polt, J. M. (1960). Pupil size as related to interest value of visual stimuli. Science, 132, 349–350. https://doi.org/10.1126/science.132.3423.349
Article
PubMed
Google Scholar
Hoy, J. A., Hatton, C., & Hare, D. (2004). Weak central coherence: A cross-domain phenomenon specific to autism? Autism, 8, 267–281. https://doi.org/10.1177/1362361304045218
Article
PubMed
Google Scholar
Jolliffe, T., & Baron-Cohen, S. (1997). Are people with autism and Asperger syndrome faster than normal on the Embedded Figures Test? Journal of Child Psychology and Psychiatry, 38, 527–534. https://doi.org/10.1111/j.1469-7610.1997.tb01539.x
Article
PubMed
Google Scholar
Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154, 1583–1585. https://doi.org/10.1126/science.154.3756.1583
Article
PubMed
Google Scholar
Laeng, B., & Endestad, T. (2012). Bright illusions reduce the eye’s pupil. Proceedings of the National Academy of Sciences of the United States of America, 109, 2162–2167. https://doi.org/10.1073/pnas.1118298109
Article
PubMed
PubMed Central
Google Scholar
Laeng, B., Faerevaag, F. S., Tanggaard, S., & von Tetzchner, S. (2018). Pupillary responses to illusions of brightness in autism spectrum disorder. Iperception, 9, 2041669518771716. https://doi.org/10.1177/2041669518771716
Article
PubMed
PubMed Central
Google Scholar
Lawson, R. P., Rees, G., & Friston, K. J. (2014). An aberrant precision account of autism. Frontiers in Human Neuroscience, 8, 302. https://doi.org/10.3389/fnhum.2014.00302
Article
PubMed
PubMed Central
Google Scholar
Lynch, G. (2018). Using pupillometry to assess the atypical pupillary light reflex and LC-NE system in ASD. Behavioural Science (Basel). https://doi.org/10.3390/bs8110108
Article
Google Scholar
Lynch, G. T. F., James, S. M., & VanDam, M. (2018). Pupillary response and phenotype in ASD: Latency to constriction discriminates ASD from typically developing adolescents. Autism Research, 11, 364–375. https://doi.org/10.1002/aur.1888
Article
PubMed
Google Scholar
Manning, C., Morgan, M. J., Allen, C. T. W., & Pellicano, E. (2017). Susceptibility to Ebbinghaus and Muller–Lyer illusions in autistic children: A comparison of three different methods. Molecular Autism, 8, 16. https://doi.org/10.1186/s13229-017-0127-y
Article
PubMed
PubMed Central
Google Scholar
Marg, E., & Morgan, M. W., Jr. (1949). The pupillary near reflex; the relation of pupillary diameter to accommodation and the various components of convergence. American Journal of Optometry and Archives of American Academy of Optometry, 26, 183–198.
Article
Google Scholar
Mathot, S., Melmi, J. B., van der Linden, L., & Van der Stigchel, S. (2016). The mind-writing pupil: A human–computer interface based on decoding of covert attention through pupillometry. PLoS ONE, 11, e0148805. https://doi.org/10.1371/journal.pone.0148805
Article
PubMed
PubMed Central
Google Scholar
Mathot, S., van der Linden, L., Grainger, J., & Vitu, F. (2013). The pupillary light response reveals the focus of covert visual attention. PLoS ONE, 8, e78168. https://doi.org/10.1371/journal.pone.0078168
Article
PubMed
PubMed Central
Google Scholar
Mathot, S., & Van der Stigchel, S. (2015). New light on the mind’s eye: The pupillary light response as active vision. Current Directions in Psychological Science, 24, 374–378. https://doi.org/10.1177/0963721415593725
Article
PubMed
PubMed Central
Google Scholar
Maule, J., Stanworth, K., Pellicano, E., & Franklin, A. (2018). Color afterimages in autistic adults. Journal of Autism and Developmental Disorders, 48, 1409–1421. https://doi.org/10.1007/s10803-016-2786-5
Article
PubMed
Google Scholar
Milne, E., & Scope, A. (2008). Are children with autistic spectrum disorders susceptible to contour illusions? British Journal of Developmental Psychology, 26, 91–102. https://doi.org/10.1348/026151007x202509
Article
Google Scholar
Mitchell, P., Mottron, L., Soulieres, I., & Ropar, D. (2010). Susceptibility to the Shepard illusion in participants with autism: reduced top-down influences within perception? Autism Res, 3, 113–119. https://doi.org/10.1002/aur.130
Article
PubMed
Google Scholar
Mottron, L., Dawson, M., Soulieres, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36, 27–43. https://doi.org/10.1007/s10803-005-0040-7
Article
PubMed
Google Scholar
Murray, S. O., Boyaci, H., & Kersten, D. (2006). The representation of perceived angular size in human primary visual cortex. Nature Neuroscience, 9, 429–434. https://doi.org/10.1038/nn1641
Article
PubMed
Google Scholar
Naber, M., & Nakayama, K. (2013). Pupil responses to high-level image content. Journal of Vision. https://doi.org/10.1167/13.6.7
Article
PubMed
Google Scholar
Ni, A. M., Murray, S. O., & Horwitz, G. D. (2014). Object-centered shifts of receptive field positions in monkey primary visual cortex. Current Biology, 24, 1653–1658. https://doi.org/10.1016/j.cub.2014.06.003
Article
PubMed
Google Scholar
Nuske, H. J., Vivanti, G., & Dissanayake, C. (2014). Reactivity to fearful expressions of familiar and unfamiliar people in children with autism: An eye-tracking pupillometry study. Journal of Neurodevelopmental Disorders, 6, 14–14. https://doi.org/10.1186/1866-1955-6-14
Article
PubMed
PubMed Central
Google Scholar
Nuske, H. J., Vivanti, G., Hudry, K., & Dissanayake, C. (2014). Pupillometry reveals reduced unconscious emotional reactivity in autism. Biological Psychology, 101, 24–35. https://doi.org/10.1016/j.biopsycho.2014.07.003
Article
PubMed
Google Scholar
Nyström, P., Gredebäck, G., Bölte, S., & Falck-Ytter, T. (2015). Hypersensitive pupillary light reflex in infants at risk for autism. Molecular Autism, 6, 10–10. https://doi.org/10.1186/s13229-015-0011-6
Article
PubMed
PubMed Central
Google Scholar
Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442.
Article
Google Scholar
Pellicano, E., & Burr, D. (2012). When the world becomes “too real”: A Bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16, 504–510. https://doi.org/10.1016/j.tics.2012.08.009
Article
PubMed
Google Scholar
Pellicano, E., Jeffery, L., Burr, D., & Rhodes, G. (2007). Abnormal adaptive face-Coding mechanisms in children with autism spectrum disorder. Current Biology, 17, 1508–1512. https://doi.org/10.1016/j.cub.2007.07.065
Article
PubMed
Google Scholar
Piven, J. (2001). The broad autism phenotype: A complementary strategy for molecular genetic studies of autism. American Journal of Medical Genetics, 105, 34–35.
Article
Google Scholar
Pome, A., Binda, P., Cicchini, G. M., & Burr, D. C. (2020). Pupillometry correlates of visual priming, and their dependency on autistic traits. J Vis, 20, 3. https://doi.org/10.1167/jovi.20.3.3
Article
PubMed
PubMed Central
Google Scholar
Ponzo, M. (1910). Intorno ad alcune illusioni nel campo delle sensazioni tattili, sull'illusione di Aristotele e fenomeni analoghi, Wilhelm Engelmann.
Ring, H., Woodbury-Smith, M., Watson, P., Wheelwright, S., & Baron-Cohen, S. (2008). Clinical heterogeneity among people with high functioning autism spectrum conditions: evidence favouring a continuous severity gradient. Behavioral and Brain Functions, 4, 11. https://doi.org/10.1186/1744-9081-4-11
Article
PubMed
PubMed Central
Google Scholar
Ropar, D., & Mitchell, P. (1999). Are individuals with autism and Asperger’s syndrome susceptible to visual illusions? Journal of Child Psychology and Psychiatry, 40, 1283–1293.
Article
Google Scholar
Ropar, D., & Mitchell, P. (2001). Susceptibility to illusions and performance on visuospatial tasks in individuals with autism. Journal of Child Psychology and Psychiatry, 42, 539–549.
Article
Google Scholar
Rosenberg, A., Patterson, J. S., & Angelaki, D. E. (2015). A computational perspective on autism. Proceedings of the National Academy of Sciences of the United States of America, 112, 9158–9165. https://doi.org/10.1073/pnas.1510583112
Article
PubMed
PubMed Central
Google Scholar
Ruta, L., Mazzone, D., Mazzone, L., Wheelwright, S., & Baron-Cohen, S. (2012). The Autism-Spectrum Quotient-Italian version: A cross-cultural confirmation of the broader autism phenotype. Journal of Autism and Developmental Disorders, 42, 625–633. https://doi.org/10.1007/s10803-011-1290-1
Article
PubMed
Google Scholar
Ruzich, E., et al. (2015). Measuring autistic traits in the general population: A systematic review of the Autism-Spectrum Quotient (AQ) in a nonclinical population sample of 6,900 typical adult males and females. Mol Autism, 6, 2. https://doi.org/10.1186/2040-2392-6-2
Article
PubMed
PubMed Central
Google Scholar
Schwarzkopf, D. S., Song, C., & Rees, G. (2011). The surface area of human V1 predicts the subjective experience of object size. Nature Neuroscience, 14, 28–30. https://doi.org/10.1038/nn.2706
Article
PubMed
Google Scholar
Shah, A., & Frith, U. (1983). An islet of ability in autistic children: A research note. Journal of Child Psychology and Psychiatry, 24, 613–620. https://doi.org/10.1111/j.1469-7610.1983.tb00137.x
Article
PubMed
Google Scholar
Sinha, P., et al. (2014). Autism as a disorder of prediction. Proceedings of the National Academy of Sciences of the United States of America, 111, 15220–15225. https://doi.org/10.1073/pnas.1416797111
Article
PubMed
PubMed Central
Google Scholar
Skuse, D. H., et al. (2009). Social communication competence and functional adaptation in a general population of children: Preliminary evidence for sex-by-verbal IQ differential risk. Journal of the American Academy of Child and Adolescent Psychiatry, 48, 128–137. https://doi.org/10.1097/CHI.0b013e31819176b8
Article
PubMed
Google Scholar
Sperandio, I., & Chouinard, P. A. (2015). The mechanisms of size constancy. Multisensory Research, 28, 253–283. https://doi.org/10.1163/22134808-00002483
Article
PubMed
Google Scholar
Sperandio, I., Chouinard, P. A., & Goodale, M. A. (2012). Retinotopic activity in V1 reflects the perceived and not the retinal size of an afterimage. Nature Neuroscience, 15, 540–542. https://doi.org/10.1038/nn.3069
Article
PubMed
Google Scholar
Tanaka, S., & Fujita, I. (2015). Computation of object size in visual cortical area V4 as a neural basis for size constancy. Journal of Neuroscience, 35, 12033–12046. https://doi.org/10.1523/JNEUROSCI.2665-14.2015
Article
PubMed
Google Scholar
Turi, M., Burr, D. C., & Binda, P. (2018). Pupillometry reveals perceptual differences that are tightly linked to autistic traits in typical adults. Elife. https://doi.org/10.7554/eLife.32399
Article
PubMed
PubMed Central
Google Scholar
Turi, M., Burr, D. C., Igliozzi, R., Aagten-Murphy, D., Muratori, F., & Pellicano, E. (2015). Children with autism spectrum disorder show reduced adaptation to number. Proceedings of the National Academy of Sciences of the United States of America, 112, 7868–7872. https://doi.org/10.1073/pnas.1504099112
Article
PubMed
PubMed Central
Google Scholar
van Boxtel, J. J., & Lu, H. (2013). A predictive coding perspective on autism spectrum disorders. Frontiers in Psychology, 4, 19. https://doi.org/10.3389/fpsyg.2013.00019
Article
PubMed
PubMed Central
Google Scholar
Van de Cruys, S., et al. (2014). Precise minds in uncertain worlds: Predictive coding in autism. Psychological Review, 121, 649–675. https://doi.org/10.1037/a0037665
Article
PubMed
Google Scholar
Wagner, J. B., Luyster, R. J., Tager-Flusberg, H., & Nelson, C. A. (2016). Greater pupil size in response to emotional faces as an early marker of social-communicative difficulties in infants at high risk for autism. Infancy, 21, 560–581. https://doi.org/10.1111/infa.12128
Article
PubMed
PubMed Central
Google Scholar
Walter, E., Dassonville, P., & Bochsler, T. M. (2009). A specific autistic trait that modulates visuospatial illusion susceptibility. Journal of Autism and Developmental Disorders, 39, 339–349. https://doi.org/10.1007/s10803-008-0630-2
Article
PubMed
Google Scholar
Wetzels, R., & Wagenmakers, E. J. (2012). A default Bayesian hypothesis test for correlations and partial correlations. Psychonomic Bulletin & Review, 19, 1057–1064. https://doi.org/10.3758/s13423-012-0295-x
Article
Google Scholar
Wheelwright, S., Auyeung, B., Allison, C., & Baron-Cohen, S. (2010). Defining the broader, medium and narrow autism phenotype among parents using the Autism Spectrum Quotient (AQ). Molecular Autism, 1, 10. https://doi.org/10.1186/2040-2392-1-10
Article
PubMed
PubMed Central
Google Scholar
Zavagno, D., Tommasi, L., & Laeng, B. (2017). The eye pupil’s response to static and dynamic illusions of luminosity and darkness. Iperception, 8, 2041669517717754. https://doi.org/10.1177/2041669517717754
Article
PubMed
PubMed Central
Google Scholar
Zhang, H., Clarke, R. J., & Gamlin, P. D. (1996). Behavior of luminance neurons in the pretectal olivary nucleus during the pupillary near response. Experimental Brain Research, 112, 158–162. https://doi.org/10.1007/bf00227189
Article
PubMed
Google Scholar