Skip to main content
Log in

Brief Report: Pupillometry, Visual Perception, and ASD Features in a Task-Switching Paradigm

  • Brief Report
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

We assessed the association between dynamic changes in pupil response in the context of visual perception and quantitative measures of the autism phenotype in healthy adults. Using Navon stimuli in a task-switching paradigm, participants were instructed to identify global or local information based on a cue. Multiple pupil response trajectories across conditions were identified. We combined trajectory patterns for global and local conditions and used data-driven methods to identify three distinct pupil trajectory sub-groups. We report higher scores on quantitative measures of autism features in individuals who demonstrated an increased change in pupil diameter across both conditions. Results demonstrate the use of individualized pupil response trajectories in order to quantitatively characterize visual perception associated with the broader autism phenotype (BAP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Notes

  1. While stimuli were presented for 5.5 s, due to consistent variability in Tobii eyetracking acquisitions (some having slightly over and/or under 330 samples taken across each 5.5 stimulus presentation) the initial 300 collected samples within each trial were used in analyses.

  2. We also explored potential differences in baseline pupil diameter between global and local conditions between our pupil trajectory groups. These analyses were carried out for all three pupil trajectory groups as well as comparisons between DIL and the collapsed, LF + NAR group. Results did not indicate significant differences in baseline pupil diameter associated with pupil trajectory group membership(p’s > 0.82, NS).

References

  • Ahern, S., & Beatty, J. (1979). Pupillary responses during information processing vary with Scholastic Aptitude Test scores. Science,205(4412), 1289–1292.

    Article  PubMed  Google Scholar 

  • Almeida, R. A., Dickinson, J. E., Maybery, M. T., Badcock, J. C., & Badcock, D. R. (2010). A new step towards understanding embedded figures test performance in the autism spectrum: The radial frequency search task. Neuropsychologia,48(2), 374–381.

    Article  PubMed  Google Scholar 

  • Anderson, C. J., & Colombo, J. (2009). Larger tonic pupil size in young children with autism spectrum disorder. Developmental Psychobiology,51(2), 207–211. https://doi.org/10.1002/dev.20352.

    Article  PubMed  PubMed Central  Google Scholar 

  • Antezana, L., Mosner, M. G., Troiani, V., & Yerys, B. E. (2016). Social-emotional inhibition of return in children with autism spectrum disorder versus typical development. Journal of Autism and Developmental Disorders,46(4), 1236–1246. https://doi.org/10.1007/s10803-015-2661-9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language,59(4), 390–412.

    Article  Google Scholar 

  • Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-spectrum quotient (AQ): Evidence from asperger syndrome/high-functioning autism, malesand females, scientists and mathematicians. Journal of Autism and Developmental Disorders,31(1), 5–17.

    Article  PubMed  Google Scholar 

  • Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin,91(2), 276–292. https://doi.org/10.1037/0033-2909.91.2.276.

    Article  PubMed  Google Scholar 

  • Beatty, J., & Lucero-Wagoner, B. (2000). The pupillary system. Handbook of Psychophysiology,2, 142–162.

    Google Scholar 

  • Binda, P., & Murray, S. O. (2015). Keeping a large-pupilled eye on high-level visual processing. Trends in Cognitive Sciences,19(1), 1–3. https://doi.org/10.1016/j.tics.2014.11.002.

    Article  PubMed  Google Scholar 

  • Binda, P., Pereverzeva, M., & Murray, S. O. (2013). Attention to bright surfaces enhances the pupillary light reflex. Journal of Neuroscience,33(5), 2199–2204.

    Article  PubMed  Google Scholar 

  • Blaser, E., Eglington, L., Carter, A. S., & Kaldy, Z. (2014). Pupillometry reveals a mechanism for the autism spectrum disorder (asd) advantage in visual tasks. Scientific Reports. https://doi.org/10.1038/srep04301.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boev, A. N., Fountas, K. N., Karampelas, I., Boev, C., Machinis, T. G., Feltes, C., et al. (2005). Quantitative pupillometry: Normative data in healthy pediatric volunteers. Journal of Neurosurgery: Pediatrics,103(6), 496–500.

    Google Scholar 

  • Busch, N. A., Dubois, J., & VanRullen, R. (2009). The phase of ongoing EEG oscillations predicts visual perception. Journal of Neuroscience,29(24), 7869–7876.

    Article  PubMed  Google Scholar 

  • Cassel, T. D., Messinger, D. S., Ibanez, L. V., Haltigan, J. D., Acosta, S. I., & Buchman, A. C. (2007). Early social and emotional communication in the infant siblings of children with autism spectrum disorders: An examination of the broad phenotype. Journal of Autism and Developmental Disorders,37(1), 122–132.

    Article  PubMed  Google Scholar 

  • Colder, C. R., Campbell, R. T., Ruel, E., Richardson, J. L., & Flay, B. R. (2002). A finite mixture model of growth trajectories of adolescent alcohol use: Predictors and consequences. Journal of Consulting and Clinical Psychology,70(4), 976.

    Article  PubMed  Google Scholar 

  • D’Souza, D., Booth, R., Connolly, M., Happé, F., & Karmiloff-Smith, A. (2016). Rethinking the concepts of ‘local or global processors’: Evidence from williams syndrome, down syndrome, and autism spectrum disorders. Developmental Science,19(3), 452–468.

    Article  PubMed  Google Scholar 

  • Dale, G., & Arnell, K. M. (2013). Investigating the stability of and relationships among global/local processing measures. Attention, Perception, & Psychophysics,75(3), 394–406. https://doi.org/10.3758/s13414-012-0416-7.

    Article  Google Scholar 

  • Daniels, L. B., Nichols, D. F., Seifert, M. S., & Hock, H. S. (2012). Changes in pupil diameter entrained by cortically initiated changes in attention. Visual Neuroscience,29(02), 131–142. https://doi.org/10.1017/S0952523812000077.

    Article  PubMed  Google Scholar 

  • DiCriscio, A. S., Hu, Y., & Troiani, V. (2018). Task induced pupil response and visual perception in adults. PLoS ONE,13(12), e0209556.

    Article  Google Scholar 

  • DiCriscio, A. S., Hu, Y., & Troiani, V. (2019). Visual perception, task-induced pupil response trajectories and ASD features in children. Journal of Autism and Developmental Disorders,49(7), 3016.

    Article  PubMed  Google Scholar 

  • DiCriscio, A. S., & Troiani, V. (2017a). Brief report: autism-like traits are associated with enhanced ability to disembed visual forms. Journal of Autism and Developmental Disorders,47(5), 1568–1576. https://doi.org/10.1007/s10803-017-3053-0.

    Article  Google Scholar 

  • DiCriscio, A. S., & Troiani, V. (2017b). Pupil adaptation corresponds to quantitative measures of autism traits in children. Scientific Reports,7(1), 6476.

    Article  PubMed  PubMed Central  Google Scholar 

  • Drew, P., Sayres, R., Watanabe, K., & Shimojo, S. (2001). Pupillary response to chromatic flicker. Experimental Brain Research,136(2), 256–262.

    Article  PubMed  Google Scholar 

  • Dukette, D., & Stiles, J. (2001). The effects of stimulus density on children’s analysis of hierarchical patterns. Developmental Science,4(2), 233–251.

    Article  Google Scholar 

  • Erstenyuk, V., Swanson, M. R., & Siller, M. (2014). Pupillary responses during a joint attention task are associated with nonverbal cognitive abilities and sub-clinical symptoms of autism. Research in Autism Spectrum Disorders,8(6), 644–653.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grinter, E. J., Maybery, M. T., Van Beek, P. L., Pellicano, E., Badcock, J. C., & Badcock, D. R. (2009). Global visual processing and self-rated autistic-like traits. Journal of Autism and Developmental Disorders,39(9), 1278–1290.

    Article  PubMed  Google Scholar 

  • Guy, J., Mottron, L., Berthiaume, C., & Bertone, A. (2016). A developmental perspective of global and local visual perception in autism spectrum disorder. Journal of Autism and Developmental Disorders,49(7), 2706.

    Article  Google Scholar 

  • Happe, F. (1999). Autism: Cognitive deficit or cognitive style? Trends in Cognitive Science,3(6), 216–222.

    Article  Google Scholar 

  • Happé, F. G., & Booth, R. D. (2008). The power of the positive: Revisiting weak coherence in autism spectrum disorders. The Quarterly Journal of Experimental Psychology,61(1), 50–63.

    Article  PubMed  Google Scholar 

  • Happé, F., Briskman, J., & Frith, U. (2001). Exploring the cognitive phenotype of autism: Weak “central coherence” in parents and siblings of children with autism: I. experimental tests. Journal of Child Psychology and Psychiatry,42(3), 299–307. https://doi.org/10.1111/1469-7610.00723.

    Article  PubMed  Google Scholar 

  • Haro, J., Guasch, M., Vallès, B., & Ferré, P. (2016). Is pupillary response a reliable index of word recognition? Evidence from a delayed lexical decision task. Behavior Research Methods. https://doi.org/10.3758/s13428-016-0835-9.

    Article  Google Scholar 

  • Hayward, D. A., Fenerci, C., & Ristic, J. (2018). An investigation of global-local processing bias in a large sample of typical individuals varying in autism traits. Consciousness and Cognition,65, 271–279.

    Article  PubMed  Google Scholar 

  • Hobson, R. Peter, & Bishop, M. (2003). The pathogenesis of autism: Insights from congenital blindness. Philosophical Transactions of the Royal Society B: Biological Sciences,358(1430), 335–344. https://doi.org/10.1098/rstb.2002.1201.

    Article  Google Scholar 

  • Hobson, R. P., Lee, A., & Brown, R. (1999). Autism and congenital blindness. Journal of Autism and Developmental Disorders,29(1), 45–56.

    Article  PubMed  Google Scholar 

  • Hurley, R. S. E., Losh, M., Parlier, M., Reznick, J. S., & Piven, J. (2007). The Broad autism phenotype questionnaire. Journal of Autism and Developmental Disorders,37(9), 1679–1690. https://doi.org/10.1007/s10803-006-0299-3.

    Article  PubMed  Google Scholar 

  • Ingersoll, B. (2010). Broader autism phenotype and nonverbal sensitivity: Evidence for an association in the general population. Journal of Autism and Developmental Disorders,40(5), 590–598.

    Article  PubMed  Google Scholar 

  • Ingersoll, B., Hopwood, C. J., Wainer, A., & Donnellan, M. B. (2011). A comparison of three self-report measures of the broader autism phenotype in a non-clinical sample. Journal of Autism and Developmental Disorders,41(12), 1646–1657.

    Article  PubMed  Google Scholar 

  • Jackson, I., & Sirois, S. (2009). Infant cognition: Going full factorial with pupil dilation. Developmental Science,12(4), 670–679. https://doi.org/10.1111/j.1467-7687.2008.00805.x.

    Article  PubMed  Google Scholar 

  • Jepma, M., & Nieuwenhuis, S. (2011). Pupil diameter predicts changes in the exploration–exploitation trade-off: Evidence for the adaptive gain theory. Journal of Cognitive Neuroscience,23(7), 1587–1596.

    Article  PubMed  Google Scholar 

  • Jobe, L. E., & White, S. W. (2007). Loneliness, social relationships, and a broader autism phenotype in college students. Personality and Individual Differences,42(8), 1479–1489.

    Article  Google Scholar 

  • Joseph, R. M., Keehn, B., Connolly, C., Wolfe, J. M., & Horowitz, T. S. (2009). Why is visual search superior in autism spectrum disorder? Developmental Science,12(6), 1083–1096. https://doi.org/10.1111/j.1467-7687.2009.00855.x.

    Article  PubMed  Google Scholar 

  • Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science,154(3756), 1583–1585. https://doi.org/10.1126/science.154.3756.1583.

    Article  PubMed  Google Scholar 

  • Klingner, J., Kumar, R., & Hanrahan, P. (2008). Measuring the task-evoked pupillary response with a remote eye tracker. Proceedings of the 2008 Symposium on Eye Tracking Research & Applications ACM. https://doi.org/10.1145/1344471.1344489.

    Article  Google Scholar 

  • Laeng, B., Sirois, S., & Gredeback, G. (2012). Pupillometry: A Window to the preconscious? Perspective on Psychological Science,7, 18–27.

    Article  Google Scholar 

  • Landry, R., & Bryson, S. E. (2004). Impaired disengagement of attention in young children with autism. Journal of Child Psychology and Psychiatry,45(6), 1115–1122. https://doi.org/10.1111/j.1469-7610.2004.00304.x.

    Article  PubMed  Google Scholar 

  • Landry, O., & Chouinard, P. A. (2016). Why we should study the broader autism phenotype in typically developing populations. Journal of Cognition and Development,17(4), 584–595. https://doi.org/10.1080/15248372.2016.1200046.

    Article  Google Scholar 

  • Leno, V. C., Tomlinson, S. B., Chang, S.-A. A., Naples, A. J., & McPartland, J. C. (2018). Resting-state alpha power is selectively associated with autistic traits reflecting behavioral rigidity. Scientific Reports,8(1), 11982. https://doi.org/10.1038/s41598-018-30445-2.

    Article  Google Scholar 

  • Lent, M. R., Hu, Y., Benotti, P. N., Petrick, A. T., Wood, G. C., Still, C. D., et al. (2018). Demographic, clinical, and behavioral determinants of 7-year weight change trajectories in Roux-en-Y gastric bypass patients. Surgery for Obesity and Related Diseases,14(11), 1680–1685.

    Article  PubMed  Google Scholar 

  • Losh, M., Childress, D., Lam, K., & Piven, J. (2008). Defining key features of the broad autism phenotype. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics: The Official Publication of the International Society of Psychiatric Genetics,147(4), 424–433. https://doi.org/10.1002/ajmg.b.30612.

    Article  Google Scholar 

  • Marshall, S. P. (2002). The index of cognitive activity: Measuring cognitive workload. Proceedings of the IEEE 7th Conference on Human Factors and Power Plants, 7–7. IEEE.

  • Martin, I., & McDonald, S. (2003). Weak coherence, no theory of mind, or executive dysfunction? Solving the puzzle of pragmatic language disorders. Brain and Language,85(3), 451–466.

    Article  PubMed  Google Scholar 

  • Martineau, J., Hernandez, N., Hiebel, L., Roché, L., Metzger, A., & Bonnet-Brilhault, F. (2011). Can pupil size and pupil responses during visual scanning contribute to the diagnosis of autism spectrum disorder in children? Journal of Psychiatric Research,45(8), 1077–1082. https://doi.org/10.1016/j.jpsychires.2011.01.008.

    Article  PubMed  Google Scholar 

  • Martino, Di, Adriana, M. D., Shehzad, Z., Kelly, C., Roy, A. K., Gee, D. G., et al. (2009). Relationship between cingulo-insular functional connectivity and autistic traits in neurotypical adults. American Journal of Psychiatry,166(8), 891–899.

    Article  PubMed  Google Scholar 

  • Mathôt, S., & der Stigchel, S. V. (2015). New light on the mind’s eye the pupillary light response as active vision. Current Directions in Psychological Science,24(5), 374–378. https://doi.org/10.1177/0963721415593725.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathôt, S., van der Linden, L., Grainger, J., & Vitu, F. (2013). The pupillary light response reveals the focus of covert visual attention. PLoS ONE,8(10), e78168. https://doi.org/10.1371/journal.pone.0078168.

    Article  PubMed  PubMed Central  Google Scholar 

  • McKone, E., Davies, A. A., Fernando, D., Aalders, R., Leung, H., Wickramariyaratne, T., et al. (2010). Asia has the global advantage: Race and visual attention. Vision Research,50(16), 1540–1549.

    Article  PubMed  Google Scholar 

  • Moresi, S., Adam, J. J., Rijcken, J., Van Gerven, P. W., Kuipers, H., & Jolles, J. (2008). Pupil dilation in response preparation. International Journal of Psychophysiology,67(2), 124–130.

    Article  PubMed  Google Scholar 

  • Mottron, L., Dawson, M., Soulières, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders,36(1), 27–43. https://doi.org/10.1007/s10803-005-0040-7.

    Article  PubMed  Google Scholar 

  • Naber, M., Alvarez, G. A., & Nakayama, K. (2013). Tracking the allocation of attention using human pupillary oscillations. Frontiers in Psychology, 4. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3857913/

  • Nagin, D. S., & Nagin, D. (2005). Group-based modeling of development. Cambridge: Harvard University Press.

    Book  Google Scholar 

  • Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology,9(3), 353–383.

    Article  Google Scholar 

  • Nyström, P., Gredebäck, G., Bölte, S., & Falck-Ytter, T. (2015). Hypersensitive pupillary light reflex in infants at risk for autism. Molecular Autism,6(1), 1.

    Article  Google Scholar 

  • O’Riordan, M. A., Plaisted, K. C., Driver, J., & Baron-Cohen, S. (2001). Superior visual search in autism. Journal of Experimental Psychology: Human Perception and Performance,27(3), 719.

    PubMed  Google Scholar 

  • Palinko, O., Kun, A. L., Shyrokov, A., & Heeman, P. (2010). Estimating cognitive load using remote eye tracking in a driving simulator. Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications ACM. https://doi.org/10.1145/1743666.1743701.

    Article  Google Scholar 

  • Piven, J., & Palmer, P. (1999). Psychiatric disorder and the broad autism phenotype: Evidence from a family study of multiple-incidence autism families. American Journal of Psychiatry. Retrieved from http://ps.psychiatryonline.org/doi/pdf/10.1176/ajp.156.4.557

  • Piven, J., Palmer, P., Jacobi, D., Childress, D., & Arndt, S. (1997). Broader autism phenotype: Evidence from a family history study of multiple-incidence autism families. American Journal of Psychiatry,154(2), 185–190.

    Article  PubMed  Google Scholar 

  • Plaisted, K., O’Riordan, M., & Baron-Cohen, S. (1998). Enhanced discrimination of novel, highly similar stimuli by adults with autism during a perceptual learning task. Journal of Child Psychology and Psychiatry,39(5), 765–775. https://doi.org/10.1111/1469-7610.00375.

    Article  PubMed  Google Scholar 

  • Raney, G. E., Campbell, S. J., & Bovee, J. C. (2014). Using eye movements to evaluate the cognitive processes involved in text comprehension. Journal of Visualized Experiments: JoVE, (83). Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4089416/

  • RDevelopment, C. (2012). TEAM 2009: R: A language and environment for statistical computing. Vienna, Austria. Internet: http://www.r-Project.Org

  • Reed, P., Lowe, C., & Everett, R. (2011). Perceptual learning and perceptual search are altered in male university students with higher autism quotient scores. Personality and Individual Differences,51(6), 732–736.

    Article  Google Scholar 

  • Russell-Smith, S. N., Maybery, M. T., Bayliss, D. M., & Sng, A. A. H. (2012). Support for a link between the local processing bias and social deficits in autism: An investigation of embedded figures test performance in non-clinical individuals. Journal of Autism and Developmental Disorders,42(11), 2420–2430. https://doi.org/10.1007/s10803-012-1506-z.

    Article  PubMed  Google Scholar 

  • Sasson, N. J., Elison, J. T., Turner-Brown, L. M., Dichter, G. S., & Bodfish, J. W. (2011). Brief report: Circumscribed attention in young children with autism. Journal of Autism and Developmental Disorders,41(2), 242–247. https://doi.org/10.1007/s10803-010-1038-3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasson, N. J., Turner-Brown, L. M., Holtzclaw, T. N., Lam, K. S. L., & Bodfish, J. W. (2008). Children with autism demonstrate circumscribed attention during passive viewing of complex social and nonsocial picture arrays. Autism Research,1(1), 31–42. https://doi.org/10.1002/aur.4.

    Article  PubMed  Google Scholar 

  • Scherf, K. S., Behrmann, M., Kimchi, R., & Luna, B. (2009). Emergence of global shape processing continues through adolescence. Child Development,80(1), 162–177.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah, A., & Frith, U. (1993). Why do autistic individuals show superior performance on the block design task? Journal of Child Psychology and Psychiatry,34(8), 1351–1364.

    Article  PubMed  Google Scholar 

  • Stewart, L., Overath, T., Warren, J. D., Foxton, J. M., & Griffiths, T. D. (2008). FMRI evidence for a cortical hierarchy of pitch pattern processing. PLoS ONE,3(1), e1470. https://doi.org/10.1371/journal.pone.0001470.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stewart, M. E., Watson, J., Allcock, A.-J., & Yaqoob, T. (2009). Autistic traits predict performance on the block design. Autism,13(2), 133–142. https://doi.org/10.1177/1362361308098515.

    Article  PubMed  Google Scholar 

  • Stiles, J., & Tada, W. L. (1996). Developmental change in children’s analysis of spatial patterns. Developmental Psychology,32(5), 951.

    Article  Google Scholar 

  • Turi, M., Burr, D. C., & Binda, P. (2018). Pupillometry reveals perceptual differences that are tightly linked to autistic traits in typical adults. Elife,7, e32399.

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Wel, P., & van Steenbergen, H. (2018). Pupil dilation as an index of effort in cognitive control tasks: A review. Psychonomic Bulletin & Review,25(6), 2005.

    Article  Google Scholar 

  • Varnum, M. E., Shi, Z., Chen, A., Qiu, J., & Han, S. (2014). When “Your” reward is the same as “My” reward: Self-construal priming shifts neural responses to own vs. friends’ rewards. NeuroImage,87, 164–169.

    Article  PubMed  Google Scholar 

  • Wechsler, D., & Hsiao-pin, C. (2011). WASI-II: Wechsler abbreviated scale of intelligence. Pearson.

  • Yirmiya, N., Gamliel, I., Pilowsky, T., Feldman, R., Baron-Cohen, S., & Sigman, M. (2006). The development of siblings of children with autism at 4 and 14 months: Social engagement, communication, and cognition. Journal of Child Psychology and Psychiatry,47(5), 511–523.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Kayleigh M. Adamson for their help with recruitment and data collection. This study was funded by the Simons Foundation, SFARI Explorer Award #350225. We would like to extend our sincere gratitude to the individuals who participated in this study.

Author information

Authors and Affiliations

Authors

Contributions

ASD and VT designed the research. ASD programmed the task and collected the data. YH and ASD completed data analysis. ASD, YH and VT interpreted the data. ASD drafted the manuscript. ASD, YH and VT critically revised the manuscript. All authors have read and approved the final version of the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Antoinette Sabatino DiCriscio or Vanessa Troiani.

Ethics declarations

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DiCriscio, A.S., Hu, Y. & Troiani, V. Brief Report: Pupillometry, Visual Perception, and ASD Features in a Task-Switching Paradigm. J Autism Dev Disord 49, 5086–5099 (2019). https://doi.org/10.1007/s10803-019-04213-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-019-04213-8

Keywords

Navigation