Skip to main content
Log in

Block-transitive 3-(vk, 1) designs on exceptional groups of Lie type

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

Let \({\mathcal {D}}\) be a non-trivial G-block-transitive 3-(vk, 1) design, where \(T\le G \le \textrm{Aut}(T)\) for some finite non-abelian simple group T. It is proved that if T is a simple exceptional group of Lie type, then T is either the Suzuki group \({}^2B_2(q)\) or \(G_2(q)\). Furthermore, if \(T={}^2B_2(q)\) then the design \({\mathcal {D}}\) has parameters \(v=q^2+1\) and \(k=q+1\), and so \({\mathcal {D}}\) is an inverse plane of order q, and if \(T=G_2(q)\) then the point stabilizer in T is either \(\textrm{SL}_3(q).2\) or \(\textrm{SU}_3(q).2\), and the parameter k satisfies very restricted conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Alavi, S.H.: A note on two families of \(2\)-designs arose from Suzuki-Tits ovoid. Algebra Discrete Math. 34, 169–175 (2022). https://doi.org/10.12958/adm1687

    Article  MathSciNet  Google Scholar 

  2. Alavi, S.H., Bayat, M., Daneshkhah, A.: Finite exceptional groups of Lie type and symmetric designs. Discrete Math. 345, 112894 (2022). https://doi.org/10.1016/j.disc.2022.112894

    Article  MathSciNet  Google Scholar 

  3. Alavi, S.H., Burness, T.C.: Large subgroups of simple groups. J. Algebra 421, 187–233 (2015). https://doi.org/10.1016/j.jalgebra.2014.08.026

    Article  MathSciNet  Google Scholar 

  4. Bosma, W., Cannon, J., Playoust, C.: The MAGMA algebra system I: the user language. J. Symb. Comput. 24, 235–265 (1997). https://doi.org/10.1006/jsco.1996.0125

    Article  MathSciNet  Google Scholar 

  5. Bray, J.N., Holt, D.F., Roney-Dougal, C.M.: The Maximal Subgroups of the Low-Dimensional Finite Classical Group. Cambridge University Press, New York (2013). https://doi.org/10.1017/CBO9781139192576

    Book  Google Scholar 

  6. Buekenhout, F., Delandtsheer, A., Doyen, J., Kleidman, P.B., Liebeck, M., Saxl, J.: Linear spaces with flag-transitive automorphism groups. Geom. Dedicata 36, 89–94 (1990). https://doi.org/10.1007/BF00181466

    Article  MathSciNet  Google Scholar 

  7. Cameron, P.J.: Parallelisms of Complete Designs. Cambridge University Press, New York (1976). https://doi.org/10.1017/CBO9780511662102

    Book  Google Scholar 

  8. Cameron, P.J., Praeger, C.E.: Block-transitive \(t\)-designs I: point-imprimitive designs. Discrete Math. 118, 33–43 (1993). https://doi.org/10.1016/0012-365X(93)90051-T

    Article  MathSciNet  Google Scholar 

  9. Cameron, P.J., Praeger, C.E.: Block-transitive \(t\)-designs, II: large \(t\). In: Clerck, F., Hirschfeld, J. (eds.) Finite Geometry and Combinatorics, pp. 103–119. Cambridge University Press, Cambridge (1993). https://doi.org/10.1017/CBO9780511526336.012

    Chapter  Google Scholar 

  10. Camina, A.R., Gill, N., Zalesski, A.E.: Large dimensional classical groups and linear spaces. Bull. Belg. Math. Soc. Simon Stevin 15, 705–731 (2008). https://doi.org/10.36045/BBMS/1225893950

    Article  MathSciNet  Google Scholar 

  11. Camina, A.R., Praeger, C.E.: Line-transitive, point quasiprimitive automorphism groups of finite linear spaces are affine or almost simple. Aequationes Math. 61, 221–232 (2001). https://doi.org/10.1007/s000100050174

    Article  MathSciNet  Google Scholar 

  12. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Oxford University Press, New York (1985)

    Google Scholar 

  13. Dembowski, P.: Heidelberg Finite Geometries. Springer, Berlin (1968). https://doi.org/10.1007/978-3-642-62012-6

    Book  Google Scholar 

  14. Dixon, J.D., Mortimer, B.: Permutation Groups. Springer, New York (1996). https://doi.org/10.1007/978-1-4612-0731-3

    Book  Google Scholar 

  15. Gan, Y.S., Liu, W.J.: Block-transitive point-primitive automorphism groups of Steiner \(3\)-designs. Discrete Math. 346, 113534 (2023). https://doi.org/10.1016/j.disc.2023.113534

    Article  Google Scholar 

  16. Gorenstein, D., Lyons, R., Solomon, R.: The Classification of the Finite Simple Groups, Number 3, Mathematical Surveys and Monographs, vol. 40. American Mathematical Society, Providence, RI, (1998). https://doi.org/10.1090/surv/040.3

  17. Huber, M.: The classification of flag-transitive Steiner \(3\)-designs. Adv. Geom. 5, 195–221 (2005). https://doi.org/10.1515/advg.2005.5.2.195

    Article  MathSciNet  Google Scholar 

  18. Huber, M.: Flag-transitive Steiner Designs. Birkhäuser, Basel (2009). https://doi.org/10.1007/978-3-0346-0002-6

    Book  Google Scholar 

  19. Huber, M.: On the existence of block-transitive combinatorial designs. Discrete Math. Theor. Comput. Sci. 12, 123–132 (2010)

    MathSciNet  Google Scholar 

  20. Huber, M.: On the Cameron–Praeger conjecture. J. Comb. Theory Ser. A 117, 196–203 (2010). https://doi.org/10.1016/j.jcta.2009.04.004

    Article  MathSciNet  Google Scholar 

  21. Huber, M.: Block-transitive designs in affine spaces Designs. Des. Codes Cryptogr. 55, 235–242 (2010). https://doi.org/10.1007/s10623-009-9338-3

    Article  MathSciNet  Google Scholar 

  22. Jansen, C., Lux, K., Parker, R., Wilson, R.: An Atlas of Brauer Characters. Oxford University Press, Oxford (1995). https://doi.org/10.1112/blms/29.1.117

    Book  Google Scholar 

  23. Lan, T., Liu, W.J., Yin, F.-G.: Block-transitive \(3\)-\((v,k,1)\) designs associated with alternating groups. arXiv:abs/2208.00670

  24. Liebeck, M.W., Saxl, J., Seitz, G.M.: Subgroups of maximal rank in finite exceptional groups of Lie type. Proc. Lond. Math. Soc. 65, 297–325 (1992). https://doi.org/10.1112/plms/s3-65.2.297

    Article  MathSciNet  Google Scholar 

  25. Lüneburg, H.: Finite Mobius planes admitting a Zassenhaus group as group of automorphisms. Illinois J. Math. 8, 586–592 (1964). https://doi.org/10.1215/ijm/1256059457

    Article  MathSciNet  Google Scholar 

  26. Malle, G.: The maximal subgroups of \({}^2F_4(q^2)\). J. Algebra 139, 52–69 (1991). https://doi.org/10.1016/0021-8693(91)90283-E

    Article  MathSciNet  Google Scholar 

  27. Mann, A., Tuan, N.D.: Block-transitive point-imprimitive \(t\)-designs. Geom. Dedicata 88, 81–90 (2001). https://doi.org/10.1023/A:1013184931427

    Article  MathSciNet  Google Scholar 

  28. Vasilyev, A.V.: Minimal permutation representations of finite simple exceptional groups of types \(E_6\), \(E_7\) and \(E_8\). Algebra Logic 36, 302–310 (1997). https://doi.org/10.1007/BF02671607

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful for the anonymous referees’ comments to improve the paper. We acknowledge the algebra software package Magma [4] for computation. Weijun Liu was supported by the National Natural Science Foundation of China (12071484, 12271524); Fu-Gang Yin was supported by the National Natural Science Foundation of China (12301461,12331013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Gang Yin.

Ethics declarations

Conflict of interest

The authors declare they have no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, T., Liu, W. & Yin, FG. Block-transitive 3-(vk, 1) designs on exceptional groups of Lie type. J Algebr Comb (2024). https://doi.org/10.1007/s10801-024-01315-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10801-024-01315-0

Keywords

Mathematics Subject Classification

Navigation