Skip to main content
Log in

On the lower bounds for real double Hurwitz numbers

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

As the real counterpart of double Hurwitz number, the real double Hurwitz number depends on the distribution of real branch points. We consider the problem of asymptotic growth of real and complex double Hurwitz numbers. We provide a lower bound for real double Hurwitz numbers based on the tropical computation of real double Hurwitz numbers. By using this lower bound and J. Rau’s result ( Math Ann 375: 895-915, 2019), we prove the logarithmic equivalence of real and complex Hurwitz numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no data sets were generated or analysed during the current study.

References

  1. Bertrand, B., Brugallé, E., Mikhalkin, G.: Tropical open Hurwitz numbers. Rend. Semin. Mat. Univ. Padova 125, 157–171 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cadoret, A.: Counting real Galois covers of the projective line. Pacific J. Math. 219(1), 53–81 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cavalieri, R., Johnson, P., Markwig, H.: Tropical Hurwitz numbers. J. Algebraic Combin. 32(2), 241–265 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cavalieri, R., Johnson, P., Markwig, H.: Wall crossings for double Hurwitz numbers. Adv. Math. 228(4), 1894–1937 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cavalieri, R., Miles, E.: Riemann surfaces and algebraic curves: a first course in Hurwitz theory. London Mathematical Society Student Texts, vol. 87. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  6. Dubrovin, B., Yang, D., Zagier, D.: Classical Hurwitz numbers and related combinatorics. Mosc. Math. J. 17(4), 601–633 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. El Hilany, B., Rau, J.: Signed counts of real simple rational functions. J. Algebraic Combin. 52(3), 369–403 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Georgieva, P., Zinger, A.: Real Gromov-Witten theory in all genera and real enumerative geometry: construction. Ann. Math. (2) 188(3), 685–752 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goulden, I.P., Jackson, D.M., Vakil, R.: Towards the geometry of double Hurwitz numbers. Adv. Math. 198(1), 43–92 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guay-Paquet, M., Markwig, H., Rau, J.: The combinatorics of real double Hurwitz numbers with real positive branch points. Int. Math. Res. Not. IMRN 2016(1), 258–293 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hurwitz, A.: Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten. Math. Ann. 39(1), 1–60 (1891)

    Article  MathSciNet  MATH  Google Scholar 

  12. Itenberg, I., Kharlamov, V., Shustin, E.: Welschinger invariant and enumeration of real rational curves. Int. Math. Res. Not. 49, 2639–2653 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Itenberg, I., Kharlamov, V., Shustin, E.: Logarithmic equivalence of the Welschinger and the Gromov-Witten invariants. Russian Math. Surv. 59(6), 1093–1116 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Itenberg, I., Kharlamov, V., Shustin, E.: New cases of logarithmic equivalence of Welschinger and Gromov-Witten invariants. Proc. Steklov Inst. Math. 258(1), 65–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Itenberg, I., Kharlamov, V., Shustin, E.: Welschinger invariants of real del Pezzo surfaces of degree \( \geqslant 3\). Math. Ann. 355(3), 849–878 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Itenberg, I., Zvonkine, D.: Hurwitz numbers for real polynomials. Comment. Math. Helv. 93(3), 441–474 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Johnson, P.: Double Hurwitz numbers via the infinite wedge. Trans. Amer. Math. Soc. 367(9), 6415–6440 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kharlamov, V., R\(\breve{a}\)sdeaconu, R.: Counting real rational curves on K3 surfaces. Int. Math. Res. Not. IMRN 2015(14), 5436–5455 (2015)

  19. Li, A.-M., Zhao, G., Zheng, Q.: The number of ramified covering of a Riemann surface by Riemann surface. Comm. Math. Phys. 213(3), 685–696 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Markwig, H., Rau, J.: Tropical real Hurwitz numbers. Math. Z. 281(1–2), 501–522 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Okounkov, A., Pandharipande, R.: Gromov-Witten theory, Hurwitz theory, and completed cycles. Ann. Math. (2) 163(2), 517–560 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rau, J.: Lower bounds and asymptotics of real double Hurwitz numbers. Math. Ann. 375(1–2), 895–915 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shadrin, S., Shapiro, M., Vainshtein, A.: Chamber behavior of double Hurwitz numbers in genus 0. Adv. Math. 217(1), 79–96 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shustin, E.: On higher genus Welschinger invariants of del Pezzo surfaces. Int. Math. Res. Not. IMRN 16, 6907–6940 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Welschinger, J.-Y.: Invariants of real symplectic \(4\)-manifolds and lower bounds in real enumerative geometry. Invent. Math. 162(1), 195–234 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Welschinger, J.Y.: Spinor states of real rational curves in real algebraic convex 3-manifolds and enumerative invariants. Duke Math. J. 127(1), 89–121 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work on this text was done during the author’s visit at Institut de Mathématiques de Jussieu-Paris Rive Gauche. The author would like to thank IMJ-PRG for their hospitality and excellent working conditions. The author is deeply grateful to Ilia Itenberg for valuable discussions and suggestions. The author is also very grateful to the referees for their valuable comments and suggestions on the manuscript that allowed him to improve the presentation and to simplify the constructions in Section 4. This work was supported by China Scholarship Council, the Natural Science Foundation of Henan Province (No. 212300410287) and NSFC (No.12101565).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqiao Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Real double Hurwitz numbers via factorization

Appendix A. Real double Hurwitz numbers via factorization

In this appendix, we give an equivalent description of real double Hurwitz number via symmetric group.

Definition A.1

A real factorization of type \((g,\lambda ,\mu ;s)\) is a tuple \((\gamma ,\sigma _1,\tau _1,\ldots ,\tau _r,\sigma _2)\) of elements of the symmetric group \(\mathcal {S}_d\) satisfying:

  • \(\sigma _2\cdot \tau _r\cdot \cdots \cdot \tau _1\cdot \sigma _1={\text {id}}\);

  • \(r=l(\lambda )+l(\mu )+2g-2\);

  • \(\mathcal {C}(\sigma _1)=\lambda \), \(\mathcal {C}(\sigma _2)=\mu \), \(\mathcal {C}(\tau _i)=(2,1,\ldots ,1)\), \(i=1,\ldots ,r\);

  • the subgroup generated by \(\sigma _1\), \(\sigma _2\), \(\tau _1,\ldots ,\tau _r\) acts transitively on the set \(\{1,\ldots ,d\}\).

  • \(\gamma \) is an involution (i.e. \(\gamma ^2={\text {id}}\)) satisfying: \(\gamma \circ \sigma _1\circ \gamma =\sigma _1^{-1}\) and

    $$\begin{aligned}{} & {} \gamma \circ (\tau _i\circ \cdot \cdot \cdot \circ \tau _{1}\circ \sigma _1)\circ \gamma = (\tau _i\circ \cdot \cdot \cdot \circ \tau _{1}\circ \sigma _1)^{-1}, \text { for } i=1,\ldots ,s, \text { and}\\{} & {} \gamma \circ (\tau _j\circ \cdot \cdot \cdot \circ \tau _{s+1})\circ \gamma = (\tau _j\circ \cdot \cdot \cdot \circ \tau _{s+1})^{-1}, \text{ for } j=s+1,\ldots ,r. \end{aligned}$$

We denote by \(\mathcal {F}^\mathbb {R}(g,\lambda ,\mu ;s)\) the set of all real factorizations of type \((g,\lambda ,\mu ;s)\).

Lemma A.2

Let g, d, \(\lambda \) and \(\mu \) be as above, then

$$\begin{aligned} H^\mathbb {R}_g(\lambda ,\mu ;s)=\frac{1}{d!}|\mathcal {F}^\mathbb {R}(g,\lambda ,\mu ;s)|. \end{aligned}$$

Proof

The proof of this lemma is essentially the same as the proof of [10, Lemma 2.3 and Construction 2.4]. So we only give a sketch here.

We fix r real points \(p_1<\ldots<p_{r-s}<0<p_{r-s+1}<\ldots <p_r\) on \(\mathbb {R}P^1\setminus \{\infty \}\). Let \(p_0\) be a real point such that \(p_{r-s}<p_0<0\). We choose \(p_0\) as the base point. Let \(l_0,l_1,\ldots ,l_r\) be \(r+1\) loops depicted in Fig. 14.

Fig. 14
figure 14

Generators of \(\pi _1(\mathbb {C}P^1\setminus \{0,\infty ,p_1,\ldots ,p_r\},p_0)\)

It is easy to see that \(l_0,l_1,\dots ,l_r\) generate the fundamental group \(\pi _1(\mathbb {C}P^1\setminus \{0,\infty ,p_1,\ldots ,p_r\},p_0)\). The action of complex conjugation on \(\pi _1(\mathbb {C}P^1\setminus \{0,\infty ,p_1,\ldots ,p_r\},p_0)\) is determined by:

$$\begin{aligned}&{\text {conj}}(l_i\cdots l_0)=(l_i\cdots l_0)^{-1}, \qquad 0\le i\le s; \nonumber \\&{\text {conj}}(l_j\cdots l_{s+1})=(l_j\cdots l_{s+1})^{-1}, \qquad s+1\le j\le r. \end{aligned}$$
(1)

A real factorization \((\gamma ,\sigma _1,\tau _1,\ldots ,\tau _r,\sigma _2)\) of type \((g,\lambda ,\mu ;s)\) induces a real cover as follows: From the classical Hurwitz construction (see [11] or [5, Chapter 7]), we know that a tuple \((\sigma _1,\tau _1,\ldots ,\tau _r,\sigma _2)\) satisfying the first four conditions in Definition A.1 induces a cover \(\pi :C\rightarrow \mathbb {C}P^1\) with ramification profiles \(\lambda \) and \(\mu \) over 0 and \(\infty \), respectively, and simple ramification over \(\underline{p}\). Moreover, \(\pi ^{-1}(p_0)\) are labelled, i.e. \(\pi ^{-1}(p_0)=\{q_1,\ldots ,q_d\}\), and the monodromy actions of the loops \(l_0,\ldots ,l_r\) are represented by \(\sigma _1,\tau _1,\ldots ,\tau _r\), respectively. Suppose that \(p\in C\) is an unramified point. Choose a path \(\alpha \) in \(\mathbb {C}P^1\setminus \{0,\infty ,p_1,\ldots ,p_r\}\) from \(p_0\) to \(\pi (p)\). Lift \(\alpha \) to a path \(\tilde{\alpha }\) in C with endpoint p. Let \(q_k\) be the starting point of \(\tilde{\alpha }\). Let \(\beta ={\text {conj}}(\alpha )\) be the conjugated path of \(\alpha \). Then, lift \(\beta \) to a path \(\tilde{\beta }\) with starting point \(q_{\gamma (k)}\). Let \(\bar{p}\) be the endpoint of \(\tilde{\beta }\). We define \(\tau (p)=\bar{p}\). The fifth condition in Definition A.1 implies that \(\tau (p)\) is well defined. Then, one can extend \(\tau \) to C by standard arguments. From the construction, we know \(\pi \circ \tau ={\text {conj}}\circ \pi \). Actually, this construction gives a map \(\psi :\mathcal {F}^\mathbb {R}(g,\lambda ,\mu ;s)\rightarrow \mathcal {R}\), where \(\mathcal {R}\) is the set of isomorphism classes of real Hurwitz covers of type \((g,\lambda ,\mu ,\underline{p})\). By a similar argument to the proof of [10, Lemma 2.3], we have \(\psi :\mathcal {F}^\mathbb {R}(g,\lambda ,\mu ;s)/\mathcal {S}_d\rightarrow \mathcal {R}\) is bijective, and \({\text {Stab}}_{\mathcal {S}_d}(T)={\text {Aut}}(T)\), where \(T\in \mathcal {F}^\mathbb {R}(g,\lambda ,\mu ;s)\) is a factorization. Then, we get Lemma A.2. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y. On the lower bounds for real double Hurwitz numbers. J Algebr Comb 57, 525–546 (2023). https://doi.org/10.1007/s10801-022-01213-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-022-01213-3

Keywords

Mathematics Subject Classification

Navigation