Skip to main content
Log in

Linear sets in the projective line over the endomorphism ring of a finite field

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

Let \({{\mathrm{{PG}}}}(1,E)\) be the projective line over the endomorphism ring \( E={{\mathrm{End}}}_q({\mathbb F}_{q^t})\) of the \({\mathbb F}_q\)-vector space \({\mathbb F}_{q^t}\). As is well known, there is a bijection \(\varPsi :{{\mathrm{{PG}}}}(1,E)\rightarrow {\mathcal G}_{2t,t,q}\) with the Grassmannian of the \((t-1)\)-subspaces in \({{\mathrm{{PG}}}}(2t-1,q)\). In this paper along with any \({\mathbb F}_q\)-linear set L of rank t in \({{\mathrm{{PG}}}}(1,q^t)\), determined by a \((t-1)\)-dimensional subspace \(T^\varPsi \) of \({{\mathrm{{PG}}}}(2t-1,q)\), a subset \(L_T\) of \({{\mathrm{{PG}}}}(1,E)\) is investigated. Some properties of linear sets are expressed in terms of the projective line over the ring E. In particular, the attention is focused on the relationship between \(L_T\) and the set \(L'_T\), corresponding via \(\varPsi \) to a collection of pairwise skew \((t-1)\)-dimensional subspaces, with \(T\in L'_T\), each of which determine L. This leads among other things to a characterization of the linear sets of pseudoregulus type. It is proved that a scattered linear set L related to \(T\in {{\mathrm{{PG}}}}(1,E)\) is of pseudoregulus type if and only if there exists a projectivity \(\varphi \) of \({{\mathrm{{PG}}}}(1,E)\) such that \(L_T^\varphi =L'_T\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Abbreviation for \((t-1)\)-dimensional subspace.

  2. Our F-chains are different from the chains in [3] and [9], since F is not contained in the center of E.

  3. Take notice that the elements \(c_{ij}\) that are used now play the role of the elements \(dc_{ij}\) that appear in (8).

References

  1. Blunck, A.: Regular spreads and chain geometries. Bull. Belg. Math. Soc. 6, 589–603 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Blunck, A., Havlicek, H.: Extending the concept of chain geometry. Geom. Dedic. 83, 119–130 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blunck, A., Herzer, A.: Kettengeometrien - Eine Einführung. Shaker, Aachen (2005)

    MATH  Google Scholar 

  4. Csajbók, B., Zanella, C.: On the equivalence of linear sets. Des. Codes Cryptogr. 81, 269–281 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Csajbók, B., Zanella, C.: On scattered linear sets of pseudoregulus type in \(\text{ PG }(1, q^t)\). Finite Fields Appl. 41, 34–54 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Donati, G., Durante, N.: Scattered linear sets generated by collineations between pencils of lines. J. Algebraic Comb. 40, 1121–1134 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dye, R.H.: Spreads and classes of maximal subgroups of \(\text{ GL }_n(q)\), \(\text{ SL }_n(q)\), \(\text{ PGL }_n(q)\) and \(\text{ PSL }_n(q)\). Ann. Mat. Pura Appl. 4(158), 33–50 (1991)

    Article  Google Scholar 

  8. Havlicek, H.: Divisible designs, Laguerre geometry, and beyond. J. Math. Sci. (N.Y.) 186, 882–926 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Herzer, A.: Chain geometries. In: Buekenhout, F. (ed.) Handbook of Incidence Geometry, pp. 781–842. Elsevier, Amsterdam (1995)

    Chapter  Google Scholar 

  10. Hubaut, X.: Algèbres projectives. Bull. Soc. Math. Belg. 17, 495–502 (1965)

    MathSciNet  MATH  Google Scholar 

  11. Knarr, N.: Translation Planes. Lecture Notes in Mathematics, vol. 1611. Springer, Berlin (1995)

  12. Lang, S.: Algebra, 3rd edn. Addison-Wesley, Reading (1993)

    MATH  Google Scholar 

  13. Lavrauw, M., Sheekey, J., Zanella, C.: On embeddings of minimum dimension of \({\rm PG}(n, q) \times {\rm PG}(n, q)\). Des. Codes Cryptogr. 74, 427–440 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lavrauw, M., Van de Voorde, G.: On linear sets on a projective line. Des. Codes Cryptogr. 56, 89–104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lavrauw, M., Van de Voorde, G.: Field reduction and linear sets in finite geometry. Topics in finite fields. Contemp. Math. 632, 271–293 (2015)

    Article  MATH  Google Scholar 

  16. Lavrauw, M., Zanella, C.: Subgeometries and linear sets on a projective line. Finite Fields Appl. 34, 95–106 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lavrauw, M., Zanella, C.: Subspaces intersecting each element of a regulus in one point, André–Bruck–Bose representation and clubs. Electron. J. Comb. 23, Paper 1.37 (2016)

  18. Lunardon, G., Marino, G., Polverino, O., Trombetti, R.: Maximum scattered linear sets of pseudoregulus type and the Segre variety \({\cal{S}}_{n, n}\). J. Algebraic Comb. 39, 807–831 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lunardon, G., Polverino, O.: Blocking sets and derivable partial spreads. J. Algebraic Comb. 14, 49–56 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Polverino, O.: Linear sets in finite projective spaces. Discrete Math. 310, 3096–3107 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wan, Z.-X.: Geometry of Matrices. World Scientific, Singapore (1996)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corrado Zanella.

Additional information

This work was supported by GNSAGA of Istituto Nazionale di Alta Matematica “F. Severi” (Rome) and partly done while Hans Havlicek was Visiting Professor at the University of Padua, Vicenza, Italy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Havlicek, H., Zanella, C. Linear sets in the projective line over the endomorphism ring of a finite field. J Algebr Comb 46, 297–312 (2017). https://doi.org/10.1007/s10801-017-0753-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-017-0753-7

Keywords

Mathematics Subject Classification

Navigation