Skip to main content
Log in

Matrix Schubert varieties and Gaussian conditional independence models

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

Matrix Schubert varieties are certain varieties in the affine space of square matrices which are determined by specifying rank conditions on submatrices. We study these varieties for generic matrices, symmetric matrices, and upper triangular matrices in view of two applications to algebraic statistics: We observe that special conditional independence models for Gaussian random variables are intersections of matrix Schubert varieties in the symmetric case. Consequently, we obtain a combinatorial primary decomposition algorithm for some conditional independence ideals. We also characterize the vanishing ideals of Gaussian graphical models for generalized Markov chains. In the course of this investigation, we are led to consider three related stratifications, which come from the Schubert stratification of a flag variety. We provide some combinatorial results, including describing the stratifications using the language of rank arrays and enumerating the strata in each case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The upper triangular Gröbner basis result can also be obtained by appealing to [24].

  2. By a diagonal monomial order, we mean any monomial order satisfying the property that the leading term of the determinant of a submatrix is the product of the entries along the diagonal of that submatrix.

References

  1. Becker, T., Weispfenning, V.: Gröbner Bases, Graduate Texts in Mathematics, vol. 141. Springer, New York (1993). doi:10.1007/978-1-4612-0913-3. A computational approach to commutative algebra, In cooperation with Heinz Kredel

    Book  MATH  Google Scholar 

  2. Brion, M.: Lectures on the geometry of flag varieties. In: Topics in Cohomological Studies of Algebraic Varieties, Trends Math., pp. 33–85. Birkhäuser, Basel (2005). doi:10.1007/3-7643-7342-3_2

  3. Brion, M., Kumar, S.: Frobenius Splitting Methods in Geometry and Representation Theory, Progress in Mathematics, vol. 231. Birkhäuser Boston Inc, Boston (2005)

    MATH  Google Scholar 

  4. Ding, K.: Rook placements and classification of partition varieties \(B\backslash M_\lambda \). Commun. Contemp. Math. 3(4), 495–500 (2001). doi:10.1142/S0219199701000469

    Article  MathSciNet  MATH  Google Scholar 

  5. Drton, M., Sturmfels, B., Sullivant, S.: Lectures on Algebraic Statistics, Oberwolfach Seminars, vol. 39. Birkhäuser Verlag, Basel (2009). doi:10.1007/978-3-7643-8905-5

    Book  MATH  Google Scholar 

  6. Ehrenborg, R., Steingrímsson, E.: Yet another triangle for the Genocchi numbers. Eur. J. Comb. 21(5), 593–600 (2000). doi:10.1006/eujc.1999.0370

    Article  MathSciNet  MATH  Google Scholar 

  7. Eriksson, K., Linusson, S.: Combinatorics of Fulton’s essential set. Duke Math. J. 85(1), 61–76 (1996). doi:10.1215/S0012-7094-96-08502-6

    Article  MathSciNet  MATH  Google Scholar 

  8. Fomin, S., Zelevinsky, A.: Double Bruhat cells and total positivity. J. Am. Math. Soc. 12(2), 335–380 (1999). doi:10.1090/S0894-0347-99-00295-7

    Article  MathSciNet  MATH  Google Scholar 

  9. Fulton, W.: Flags, Schubert polynomials, degeneracy loci, and determinantal formulas. Duke Math. J. 65(3), 381–420 (1992). doi:10.1215/S0012-7094-92-06516-1

    Article  MathSciNet  MATH  Google Scholar 

  10. Fulton, W.: Young Tableaux, London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (1997). With applications to representation theory and geometry

    Google Scholar 

  11. Gasharov, V., Reiner, V.: Cohomology of smooth Schubert varieties in partial flag manifolds. J. Lond. Math. Soc. 66(3), 550–562 (2002). doi:10.1112/S0024610702003605

    Article  MathSciNet  MATH  Google Scholar 

  12. Knutson, A.: Frobenius splitting, point-counting, and degeneration (2009)

  13. Knutson, A., Lam, T., Speyer, D.E.: Positroid varieties: juggling and geometry. Compos. Math. 149(10), 1710–1752 (2013). doi:10.1112/S0010437X13007240

    Article  MathSciNet  MATH  Google Scholar 

  14. Knutson, A., Lam, T., Speyer, D.E.: Projections of Richardson varieties. J. Reine Angew. Math. 687, 133–157 (2014). doi:10.1515/crelle-2012-0045

    MathSciNet  MATH  Google Scholar 

  15. Knutson, A., Miller, E.: Gröbner geometry of Schubert polynomials. Ann. Math. 161(3), 1245–1318 (2005). doi:10.4007/annals.2005.161.1245

    Article  MathSciNet  MATH  Google Scholar 

  16. Lakshmibai, V., Raghavan, K.N.: Standard Monomial Theory, Encyclopaedia of Mathematical Sciences, vol. 137. Springer, Berlin (2008). Invariant theoretic approach, Invariant Theory and Algebraic Transformation Groups, 8

    MATH  Google Scholar 

  17. Lusztig, G.: Total positivity in reductive groups. In: Lie theory and geometry, Progr. Math., vol. 123, pp. 531–568. Birkhäuser Boston, Boston (1994)

  18. Sjöstrand, J.: Bruhat intervals as rooks on skew Ferrers boards. J. Comb. Theory Ser. A 114(7), 1182–1198 (2007). doi:10.1016/j.jcta.2007.01.001

    Article  MathSciNet  MATH  Google Scholar 

  19. Stanley, R.P.: Enumerative Combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics, vol. 49, 2nd edn. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  20. Sullivant, S.: Gaussian conditional independence relations have no finite complete characterization. J. Pure Appl. Algebra 213(8), 1502–1506 (2009). doi:10.1016/j.jpaa.2008.11.026

    Article  MathSciNet  MATH  Google Scholar 

  21. Sullivant, S., Talaska, K., Draisma, J.: Trek separation for Gaussian graphical models. Ann. Stat. 38(3), 1665–1685 (2010). doi:10.1214/09-AOS760

    Article  MathSciNet  MATH  Google Scholar 

  22. Ulfarsson, H., Woo, A.: Which Schubert varieties are local complete intersections? Proc. Lond. Math. Soc. 107(5), 1004–1052 (2013). doi:10.1112/plms/pdt004

    Article  MathSciNet  MATH  Google Scholar 

  23. Woo, A., Yong, A.: Governing singularities of Schubert varieties. J. Algebra 320(2), 495–520 (2008). doi:10.1016/j.jalgebra.2007.12.016

    Article  MathSciNet  MATH  Google Scholar 

  24. Woo, A., Yong, A.: A Gröbner basis for Kazhdan–Lusztig ideals. Am. J. Math. 134(4), 1089–1137 (2012). doi:10.1353/ajm.2012.0031

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Allen Knutson for pointing out the connection between symmetric matrices and the symplectic Grassmannian, and an anonymous referee for several valuable suggestions. In particular, Proposition 4.8 and all connections to Gasharov and Reiner’s work [11] appears because of the referee’s comments. Seth Sullivant was partially supported by the David and Lucille Packard Foundation and the US National Science Foundation (DMS 0954865).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenna Rajchgot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fink, A., Rajchgot, J. & Sullivant, S. Matrix Schubert varieties and Gaussian conditional independence models. J Algebr Comb 44, 1009–1046 (2016). https://doi.org/10.1007/s10801-016-0698-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-016-0698-2

Keywords

Navigation