Skip to main content
Log in

Stanley depth and simplicial spanning trees

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

We show that for proving the Stanley conjecture, it is sufficient to consider a very special class of monomial ideals. These ideals (or rather their lcm lattices) are in bijection with the simplicial spanning trees of skeletons of a simplex. We apply this result to verify the Stanley conjecture for quotients of monomial ideals with up to six generators. For seven generators, we obtain a partial result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The assumption in [14] that \(\phi \) is a map of the lcm-semilattices is equivalent to the assumption that \(\phi \) is injective on \(\hat{0}_L\), because the semilattices in our situation are \(L \setminus \{\hat{0}_L\}\) and \(L' \setminus \{\hat{0}_{L'}\}\).

References

  1. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Björner, A.: Topological methods. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, vol. 2, pp. 1819–1872. Elsevier, North Holland (1995)

    Google Scholar 

  3. Bruns, W., Herzog, J.: Cohen–Macaulay Rings, Rev. Ed. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  4. Bruns, W., Krattenthaler, C., Uliczka, J.: Stanley decompositions and Hilbert depth in the Koszul complex. J. Commut. Algebra 2(3), 327–357 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Duval, A., Klivans, C., Martin, J.: Simplicial matrix-tree theorems. Trans. Am. Math. Soc. 361(11), 6073–6114 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gasharov, V., Peeva, I., Welker, V.: The LCM-lattice in monomial resolutions. Math. Res. Lett. 6, 521–532 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Herzog, J.: A survey on Stanley depth. In: Bigatti, A.M., Gimenez, P., Sáenz-de-Cabezón, E. (eds.) Monomial Ideals, Computations and Applications, pp. 3–45. Springer, Berlin, Heidelberg (2013)

  8. Herzog, J., Jahan, A.S., Yassemi, S.: Stanley decompositions and partitionable simplicial complexes. J. Algebr. Comb. 27(1), 113–125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Herzog, J., Hibi, T.: Monomial Ideals. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  10. Herzog, J., Jahan, A.S., Zheng, X.: Skeletons of monomial ideals. Math. Nachr. 283(10), 1403–1408 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Herzog, J., Vladoiu, M., Zheng, X.: How to compute the Stanley depth of a monomial ideal. J. Algebra 322(9), 3151–3169 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ichim, B., Moyano Fernández, J.J.: How to compute the multigraded Hilbert depth of a module. Math. Nachr. 287(11–12), 1274–1287 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ichim, B., Katthän, L., Moyano Fernández, J.J. : Lcm-lattices and Stanley depth: a first computational approach. Exp. Math. (to appear) (2014). arXiv: 1408.4255

  14. Ichim, B., Katthän, L., Moyano Fernández, J.J.: Stanley depth and the lcm-lattice. In: ArXiv e-prints. arXiv: 1405.3602 (2014)

  15. Ichim, B., Katthän, L., Moyano Fernández, J.J.: The behavior of Stanley depth under polarization. In: ArXiv e-prints. arXiv: 1401.4309 (2014)

  16. Ichim, B., Zarojanu, A.: An algorithm for computing the multigraded Hilbert depth of a module. Exp. Math. 23(3), 322–331 (2014)

    Article  MathSciNet  Google Scholar 

  17. Kalai, G.: Enumeration of Q-acyclic simplicial complexes. Isr. J. Math. 45(4), 337–351 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Katthän, L., Seyed Fakhari, S.A.: Two lower bounds for the Stanley depth of monomial ideals. Math. Nachr. (to appear) (2014). arXiv: 1405.5450

  19. Mapes, S.: Finite atomic lattices and resolutions of monomial ideals. J. Algebra 379, 259–276 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra, Graduate Texts in Mathematics, vol. 227. Springer, Berlin (2005)

    Google Scholar 

  21. Miller, E.: The Alexander duality functors and local duality with monomial support. J. Algebra 231(1), 180–234 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Peeva, I., Velasco, M.: Frames and degenerations of monomial resolutions. Trans. Am. Math. Soc. 363(4), 2029–2046 (2011)

    Article  MathSciNet  Google Scholar 

  23. Popescu, A., Popescu, D.: Four Generated, Squarefree, Monomial Ideals. In: Ibadula, D., Veys, W. (eds.) Bridging Algebra, Geometry, and Topology, pp. 231–248. Springer, Berlin (2014)

    Google Scholar 

  24. Popescu, D.: Stanley depth on five generated, squarefree, monomial ideals. In: ArXiv e-prints. arXiv: 1312.0923 (2013)

  25. Popescu, D.: Depth of factors of square free monomial ideals. Proc. Am. Math. Soc. 142(6), 1965–1972 (2014)

    Article  Google Scholar 

  26. Pournaki, M., et al.: Stanley depth? In: Notices of the AMS 56.9 (2009)

  27. Stanley, R.: Linear Diophantine equations and local cohomology. Invent. Math. 68, 175–193 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank Winfried Bruns for suggesting the method described in 7.2.1 and Markus Spitzweck for discussing the proof of Theorem 4.3. Moreover, the author thanks Bogdan Ichim, Francesco Strazzanti, Richard Sieg and Mihai Cipu for pointing out many typos in an earlier version of this article. Further, I would like to thank the two anonymous reviewers for several helpful hints and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Katthän.

Additional information

The author was partially supported by the German Research Council DFG-GRK 1916.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katthän, L. Stanley depth and simplicial spanning trees. J Algebr Comb 42, 507–536 (2015). https://doi.org/10.1007/s10801-015-0589-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-015-0589-y

Keywords

Mathematics Subject Classification

Navigation