Skip to main content
Log in

On products of long cycles: short cycle dependence and separation probabilities

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

We present various results on multiplying cycles in the symmetric group. One result is a generalisation of the following theorem of Boccara (Discret Math 29:105–134, 1980): the number of ways of writing an odd permutation in the symmetric group on \(n\) symbols as a product of an \(n\)-cycle and an \((n-1)\)-cycle is independent of the permutation chosen. We give a number of different approaches of our generalisation. One partial proof uses an inductive method which we also apply to other problems. In particular, we give a formula for the distribution of the number of cycles over all products of cycles of fixed lengths. Another application is related to the recent notion of separation probabilities for permutations introduced by Bernardi et al. (Comb Probab Comput 23:201–222, 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bernardi, O., Du, R.X., Morales, A.H., Stanley, R.P.: Separation probabilities for products of permutations. Comb. Probab. Comput. 23, 201–222 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  2. Boccara, G.: Nombres de représentations d’une permutation comme produit de deux cycles de longuers données. Discret. Math. 29, 105–134 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cori, R., Marcus, M., Schaeffer, G.: Odd permutations are nicer than even ones. Eur. J. Comb. 33(7), 1467–1478 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Farahat, H., Higman, G.: The centres of symmetric group rings. Proc. R. Soc. A 250, 212–221 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  5. Frobenius, G.: Über die Charaktere der symmetrischen Gruppe. Sitz.-Ber. Preuss. Akad. Wiss. Berl. 516–534 (1900)

  6. Féray, V., Vassilieva, E.A.: Bijective enumeration of some colored permutations given by the product of two long cycles. Discret. Math. 312(2), 279–292 (2012)

    Article  MATH  Google Scholar 

  7. Goulden, I.P., Jackson, D.M.: The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group. Eur. J. Comb. 13(5), 357–365 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Goupil, A., Schaeffer, G.: Factoring n-cycles and counting maps of given genus. Eur. J. Comb. 19(7), 819–834 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hanlon, P., Stembridge, J., Stanley, R.: Some combinatorial aspects of the spectra of normally distributed random matrices. Contemp. Math. 158, 151–174 (1992)

    Article  MathSciNet  Google Scholar 

  10. Jackson, D.M.: Counting cycles in permutations by group characters, with an application to a topological problem. Trans. Am. Math. Soc. 299(2), 785–801 (1987)

    Article  MATH  Google Scholar 

  11. Jackson, D.M., Visentin, T.I.: A character theoretic approach to embeddings of rooted maps in an orientable surface of given genus. Trans. Am. Math. Soc. 322(1), 343–363 (1990)

    MATH  MathSciNet  Google Scholar 

  12. Littlewood, D.E.: The Theory of Group Characters and Matrix Representations of Groups. American Mathematical Society, Providence (1950)

    MATH  Google Scholar 

  13. Littlewood, D.E., Richardson, A.R.: Group characters and algebra. Philos. Trans. R. Soc. Lond. Ser. A 233, 99–141 (1934).

  14. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  15. Sagan, B.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, 2nd edn. Springer, New York (2001)

    Book  Google Scholar 

  16. Stanley, R.P.: Factorization of permutations into \(n\)-cycles. Discret. Math. 37, 255–262 (1981)

    Article  MATH  Google Scholar 

  17. Stanley, R.P.: Products of cycles. Talk given at permutation patterns, slides available at http://math.mit.edu/rstan/transparencies/cycleprod.pdf (2010)

  18. Stanley, R.P.: Two enumerative results on cycles of permutations. Eur. J. Comb. 32(6), 937–943 (2011)

    Article  MATH  Google Scholar 

  19. Vassilieva, E.A.: Explicit monomial expansions of the generating series for connection coefficients. DMTCS Proc. FPSAC AR, 123–134 (2012)

  20. Walkup, D.W.: How many ways can a permutation be factored into two n-cycles? Discret. Math. 28(3), 315–319 (1979)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research project was started during a visit of AR in Bordeaux. This visit was funded via the “invité junior” programme of LaBRI. AR would like to thank people in LaBRI for their generous hospitality. V.F. is partially supported by ANR Grant PSYCO ANR-11-JS02-001. Both authors would like to thank the anonymous referees for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amarpreet Rattan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Féray, V., Rattan, A. On products of long cycles: short cycle dependence and separation probabilities. J Algebr Comb 42, 183–224 (2015). https://doi.org/10.1007/s10801-014-0578-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-014-0578-6

Keywords

Navigation