Skip to main content
Log in

Electrochemical syntheses and characterization of some polydyes and their application for the simultaneous determination of ascorbic acid and uric acid

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Monomers: gentian violet (GV), brilliant green (BG), aniline, and methyl violet (MV), as well as their copolymers, were electropolymerized and used to modify glassy carbon electrode (GCE) by enhancing the sensitivity of the electrode. This is due to their special characteristics of sensing ability of the electropolymerized polymers. The electropolymerization and characterization of these monomers and their copolymers were done using cyclic voltammetry (CV) on GCE as a working electrode against Ag/AgCl reference electrode and platinum wire as the counter electrode. The copolymers showed higher current peaks than their corresponding homopolymers. The electrochemical characterization of these polymers and copolymers was studied by scan rate effect each between 10 and 300 mV/s and pH effect between 1.56 and 5.30. After being modified by the copolymers: poly(BG-GV) and poly(BG-MV), the modified GCE showed good results in resolving the peaks of ascorbic acid and uric acid which otherwise showed an overlapped broad peak on bare GCE. The CV in bare GCE was scanned at different scan rates of 4 mM K3[Fe(CN)6] in 1 M KNO3 solution. The square root of scan rate dependence of peak current was plotted and the Randles–Sevcik equation was applied to determine the diffusion coefficient of Fe(CN)63− ion and which was 1.13 × 10–14 cm2/s. This was used to determine the area of the modified electrode after running the CV of 4 mM K3[Fe(CN)6] in 1 M KNO3 at different scan rates. Therefore, the electrochemical polymerization of organic dye polymers was able to increase the sensitivity of the electrode by increasing its area.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Guo X, Facchetti A (2020) The journey of conducting polymers from discovery to application. Nat Mater 19:922–928. https://doi.org/10.1038/s41563-020-0778-5

  2. Namsheer K, Rout CS (2021) Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Adv 11(10):5659–5697. https://doi.org/10.1039/d0ra07800j

    Article  CAS  Google Scholar 

  3. Janata J, Josowicz M (2003) Conducting polymers in electronic chemical sensors. Nat Mater 2(1):19–24. https://doi.org/10.1038/nmat768

    Article  CAS  PubMed  Google Scholar 

  4. Alışık F, Burç M, Titretir Duran S, Güngör Ö, Cengiz MA, Köytepe S (2021) Development of gum-Arabic-based polyurethane membrane-modified electrodes as voltammetric sensor for the detection of phenylalanine. Polym Bull 78(8):4699–4719. https://doi.org/10.1007/s00289-021-03605-0

    Article  CAS  Google Scholar 

  5. Tkach VV, de Martins JIFP, Ivanushko YG, Yagodynets PI (2022) Dye electropolymerization for electrochemical analysis. A brief review. Biointerface Res Appl Chem 12(3):4028–4047. https://doi.org/10.33263/BRIAC123.40284047

    Article  CAS  Google Scholar 

  6. Aksoy B, Güngör Ö, Köytepe S, Seckin T (2015) Preparation of novel sensors based on polyimide membrane for sensitive and selective determination of dopamine. Polym Plast Technol Eng 55:150827134246008. https://doi.org/10.1080/03602559.2015.1055503

    Article  CAS  Google Scholar 

  7. Saidman S (2002) The effect of PH on the electrochemical polymerisation of pyrrole on aluminium. J Electroanal Chem J Electroanal Chem 534:39–45. https://doi.org/10.1016/S0022-0728(02)01102-6

    Article  CAS  Google Scholar 

  8. Fomo G, Waryo T, Feleni U, Baker P, Iwuoha E (2019) Electrochemical polymerization. 105–131. https://doi.org/10.1007/978-3-319-95987-0_3

  9. Chani MTS, Karimov KS, Khalid FA, Moiz SA (2013) Polyaniline based impedance humidity sensors. Solid State Sci 18:78–82. https://doi.org/10.1016/j.solidstatesciences.2013.01.005

    Article  CAS  Google Scholar 

  10. Aqeel K, Mubarak HA, Amoako-Attah J, Abdul-Rahaim LA, Al Khaddar R, Abdellatif M, Al-Janabi A, Hashim KS (2020) Electrochemical removal of brilliant green dye from wastewater. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/888/1/012036

    Article  Google Scholar 

  11. Tong Z, Zheng P, Bai B, Wang H, Suo Y (2016) Adsorption performance of methyl violet via α-Fe2O3@porous hollow carbonaceous microspheres and its effective regeneration through a fenton-like reaction. Catalysts. https://doi.org/10.3390/catal6040058

    Article  Google Scholar 

  12. Zahran M (2023) Conducting dyes as electro-active monomers and polymers for detecting analytes in biological and environmental samples. Heliyon 9(9):e19943. https://doi.org/10.1016/j.heliyon.2023.e19943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jarjes ZA, Samian MR, Ab Ghani S (2015) Conductive polymers: their preparations and catalyses on NADH oxidation at carbon cloth electrodes. Arab J Chem 8(5):726–731. https://doi.org/10.1016/j.arabjc.2013.05.021

    Article  CAS  Google Scholar 

  14. Güngör Ö, Özgül O, Aksoy B, Okuşluk F, Köytepe S (2022) Titanium dioxide-multiwalled carbon nanotube/polyimide composite film modified electrodes for simultaneous voltammetric detection of ascorbic acid, uric acid and dopamine as biomarker molecules. Polym Bull 79(12):11051–11077. https://doi.org/10.1007/s00289-022-04077-6

    Article  CAS  Google Scholar 

  15. Climent V, Feliu JM (2018) Cyclic voltammetry. In: Wandelt KBT-E. of I. C., Ed. Elsevier, Oxford, pp 48–74. https://doi.org/10.1016/B978-0-12-409547-2.10764-4.

  16. Xiao Z, Subbiah J, Sun K, Jones DJ, Holmes AB, Wong WWH (2014) Synthesis and photovoltaic properties of thieno[3,2-b]thiophenyl substituted benzo[1,2-b:4,5-B′]dithiophene copolymers. Polym Chem 5(23):6710–6717. https://doi.org/10.1039/c4py00827h

    Article  CAS  Google Scholar 

  17. Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2010) Applications of conducting polymers and their issues in biomedical engineering. J R Soc Interface. https://doi.org/10.1098/rsif.2010.0120.focus

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mbacké MK, Kane C, Diallo NO, Diop CM, Chauvet F, Comtat M, Tzedakis T (2016) Electrocoagulation process applied on pollutants treatment- experimental optimization and fundamental investigation of the crystal violet dye removal. J Environ Chem Eng 4(4):4001–4011. https://doi.org/10.1016/j.jece.2016.09.002

    Article  CAS  Google Scholar 

  19. Horáková E, Barek J, Vyskočil V (2016) Determination of methyl violet 2B using polarographic and voltammetric methods at mercury electrodes. Anal Lett 49:56–65. https://doi.org/10.1080/00032719.2015.1004576

    Article  CAS  Google Scholar 

  20. Ganesh PS, Kumara Swamy BE, Fayemi OE, Sherif ESM, Ebenso EE (2018) Poly(crystal violet) modified pencil graphite electrode sensor for the electroanalysis of catechol in the presence of hydroquinone. Sens Bio-Sens Res 20(August):47–54. https://doi.org/10.1016/j.sbsr.2018.08.001

    Article  Google Scholar 

  21. Porjazoska-Kujundziski A, Chamovska D, Grchev T (2016) Electroconducting materials based on polypyrrole. Zast Mater 57(2):282–295. https://doi.org/10.5937/zasmat1602282p

    Article  Google Scholar 

  22. Cihaner A (2004) Electrochemical synthesis of crowned conducting polymers: nature of radical cations in polymerization and mechanism of conductivity. Thesis, No. June, 114

  23. Pielichowski K (1997) Kinetic analysis of the thermal decomposition of polyaniline. Solid State Ionics 104(1):123–132. https://doi.org/10.1016/S0167-2738(97)00396-2

    Article  CAS  Google Scholar 

  24. Song E, Choi J-W (2013) Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials 3:498–523. https://doi.org/10.3390/nano3030498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Korent A, Žagar Soderžnik K, Šturm S, Žužek Rožman K (2020) A correlative study of polyaniline electropolymerization and its electrochromic behavior. J Electrochem Soc 167(10):106504. https://doi.org/10.1149/1945-7111/ab9929

    Article  CAS  Google Scholar 

  26. Pifferi V, Barsan MM, Ghica ME, Falciola L, Brett CMA (2013) Synthesis, characterization and influence of poly(brilliant green) on the performance of different electrode architectures based on carbon nanotubes and poly(3,4-ethylenedioxythiophene). Electrochim Acta 98:199–207. https://doi.org/10.1016/j.electacta.2013.03.048

    Article  CAS  Google Scholar 

  27. Baba A, Tian S, Stefani F, Xia C, Wang Z, Advincula RC, Johannsmann D, Knoll W (2004) Electropolymerization and doping/dedoping properties of polyaniline thin films as studied by electrochemical-surface plasmon spectroscopy and by the quartz crystal microbalance. J Electroanal Chem 562(1):95–103. https://doi.org/10.1016/j.jelechem.2003.08.012

    Article  CAS  Google Scholar 

  28. Elugoke SE, Fayemi OE, Adekunle AS, Sherif ESM, Ebenso EE (2022) Electrochemical sensor for the detection of adrenaline at poly(crystal violet) modified electrode: optimization and voltammetric studies. Heliyon 8(10):e10835. https://doi.org/10.1016/j.heliyon.2022.e10835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yoon S-B, Yoon E-H, Kim K-B (2011) Electrochemical properties of leucoemeraldine, emeraldine, and pernigraniline forms of polyaniline/multi-wall carbon nanotube nanocomposites for supercapacitor applications. J Power Sources 196(24):10791–10797. https://doi.org/10.1016/j.jpowsour.2011.08.107

    Article  CAS  Google Scholar 

  30. Zaulkiflee ND, Ahmad AL, Che Lah NF, Low SC, Norikazu N (2023) Collation of PANI as electrode material for supercapacitor: effect of different substrate and its performances. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-023-10326-9

    Article  Google Scholar 

  31. El Aggadi S, Loudiyi N, Chadil A, El Abbassi Z, El Hourch A (2020) Electropolymerization of aniline monomer and effects of synthesis conditions on the characteristics of synthesized polyaniline thin films. Mediterr J Chem 10(2):138–145. https://doi.org/10.13171/mjc102020021114sea

    Article  CAS  Google Scholar 

  32. Sezgin S, Ates M, Parlak EA, Sarac AS (2012) Scan rate effect of 1-(4-methoxyphenyl)-1H-pyrrole electro-coated on carbon fiber: characterization via cyclic voltammetry, FTIR-ATR and electrochemical impedance spectroscopy. Int J Electrochem Sci 7(2):1093–1106. https://doi.org/10.1016/s1452-3981(23)13397-9

    Article  CAS  Google Scholar 

  33. Paredes-Salazar EA, Herrero E, Varela H (2023) Mass transfer phenomena induced by surface gas flow rate in the hanging meniscus configuration: a case study of the methanol electro-oxidation reaction on Pt(100). Electrochim Acta 464:142917. https://doi.org/10.1016/j.electacta.2023.142917

    Article  CAS  Google Scholar 

  34. King AR (1995) Mass transfer cycles in CV BT—cataclysmic variables. In: Bianchini A, Della Valle M, Orio M (eds) Springer Netherlands, Dordrecht, pp 523–532

  35. Billet R, Schultes M (1993) Predicting mass transfer in packed columns. Chem Eng Technol 16(1):1–9. https://doi.org/10.1002/ceat.270160102

    Article  CAS  Google Scholar 

  36. Liapis AI (2005) Expression for the film mass-transfer coefficient of charged solutes in a liquid stream flowing in packed beds of charged particles and charged porous monoliths. Ind Eng Chem Res 44(14):5380–5387. https://doi.org/10.1021/ie049120w

    Article  CAS  Google Scholar 

  37. Iqbal MZ, Haider SS, Siddique S, Karim MRA, Zakar S, Tayyab M, Faisal MM, Sulman M, Khan A, Baghayeri M, Kamran MA, Alherbi T, Iqbal MJ, Hussain T (2020) Capacitive and diffusion-controlled mechanism of strontium oxide based symmetric and asymmetric devices. J Energy Storage 27:101056. https://doi.org/10.1016/j.est.2019.101056

    Article  Google Scholar 

  38. García-Salinas M, de Las Nieves FJ (2003) Influence of counterion type and diffusion on the primary electroviscous effect. Colloids Surfaces A Physicochem Eng Asp 222:65–77. https://doi.org/10.1016/S0927-7757(03)00235-8

    Article  CAS  Google Scholar 

  39. Jang HJ, Shin BJ, Jung EY, Bae GT, Kim JY, Tae H-S (2023) Polypyrrole film synthesis via solution plasma polymerization of liquid pyrrole. Appl Surf Sci 608:155129. https://doi.org/10.1016/j.apsusc.2022.155129

    Article  CAS  Google Scholar 

  40. Spencer M, Holzapfel N, You K-E, Mpourmpakis G, Augustyn V (2024) Participation of electrochemically inserted protons in the hydrogen evolution reaction on tungsten oxides. Chem Sci. https://doi.org/10.1039/d4sc00102h

    Article  PubMed  PubMed Central  Google Scholar 

  41. Aleksić M, Lijeskic N, Pantic J, Kapetanovic V (2013) Electrochemical behavior and differential pulse voltammetric determination of ceftazidime, cefuroxime-axetil and ceftriaxone. Facta Univ Ser Phys Chem Technol 11:55–66. https://doi.org/10.2298/FUPCT1301055A

    Article  Google Scholar 

  42. Cesarino V, Cesarino I, Moraes F, Machado SA, Mascaro L (2014) Carbon nanotubes modified with SnO2 rods for levofloxacin detection. J Braz Chem Soc. https://doi.org/10.5935/0103-5053.20140017

    Article  Google Scholar 

  43. Van Slyke DD, Zacharias G (1914) The effect of hydrogen ion concentration and of inhibiting substances on urease. J Biol Chem 19(2):181–210. https://doi.org/10.1016/s0021-9258(18)88301-6

    Article  Google Scholar 

  44. Turbale M, Moges A, Dawit M, Amare M (2020) Adsorptive stripping voltammetric determination of tetracycline in pharmaceutical capsule formulation using poly(malachite green) modified glassy carbon electrode. Heliyon 6:e05782. https://doi.org/10.1016/j.heliyon.2020.e05782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alhemiary N, Rizk M (2017) Sensitive and validated voltammetric methods for determination of zileuton in serum, urine and pharmaceutical dosage forms at activated glassy carbon electrode. Asian J Chem 29:2627–2633. https://doi.org/10.14233/ajchem.2017.20737

    Article  CAS  Google Scholar 

  46. Elsayed EM, Rashad MM, Khalil HFY, Ibrahim IA, Hussein MR, El-Sabbah MMB (2016) The effect of solution ph on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films. Appl Nanosci 6(4):485–494. https://doi.org/10.1007/s13204-015-0453-3

    Article  CAS  Google Scholar 

  47. He Q, Zhang R, Hu Y, Li J, Yu H, Zheng Y, Qian J (2024) The effect of feeding sequence on the structure and properties of the ethylene/1-octene copolymer in the semi-continuous polymerization reaction system. Polymers (Basel). https://doi.org/10.3390/polym16040526

    Article  PubMed  PubMed Central  Google Scholar 

  48. Anbarasan R, Ponprapakaran K, Subramani HR, Rajendran B, Tung K-L (2019) Synthesis, characterization and catalytic activity of copolymer/metal oxide nanocomposites. Polym Bull. https://doi.org/10.1007/s00289-018-2591-8

    Article  Google Scholar 

  49. Majeed AH, Mohammed LA, Hammoodi OG, Sehgal S, Alheety MA, Saxena KK, Dadoosh SA, Mohammed IK, Jasim MM, Salmaan NU (2022) A review on polyaniline: synthesis, properties, nanocomposites, and electrochemical applications. Int J Polym Sci 2022:9047554. https://doi.org/10.1155/2022/9047554

    Article  CAS  Google Scholar 

  50. Govindarajan N, Xu A, Chan K (2022) How PH affects electrochemical processes. Science 375(6579):379–380. https://doi.org/10.1126/science.abj2421

    Article  CAS  PubMed  Google Scholar 

  51. Ghica ME, Brett CMA (2014) Poly(brilliant green) and poly(thionine) modified carbon nanotube coated carbon film electrodes for glucose and uric acid biosensors. Talanta 130:198–206. https://doi.org/10.1016/j.talanta.2014.06.068

    Article  CAS  PubMed  Google Scholar 

  52. Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32(8–9):876–921. https://doi.org/10.1016/j.progpolymsci.2007.05.012

    Article  CAS  Google Scholar 

  53. Park Y, Jung J, Chang M (2019) Research progress on conducting polymer-based biomedical applications. Appl Sci. https://doi.org/10.3390/app9061070

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Education of Ethiopia (MoE) and was done at Hawassa University.

Author information

Authors and Affiliations

Authors

Contributions

J. N. G., T. T. B., and S. T. A. Prepared the conception, S. T. A. secured the research fund, T. T. B. Organized the data, J. N. G has undergone the experimental work and wrote the draft manuscript, All authors reviewed the manuscript.

Corresponding authors

Correspondence to Jabesa Nagasa Guyasa, Tamene Tadesse Beyene or Sisay Tadesse Anshebo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 438 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guyasa, J.N., Beyene, T.T. & Anshebo, S.T. Electrochemical syntheses and characterization of some polydyes and their application for the simultaneous determination of ascorbic acid and uric acid. J Appl Electrochem (2024). https://doi.org/10.1007/s10800-024-02126-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10800-024-02126-8

Keywords

Navigation