Skip to main content
Log in

Electro-Fenton degradation of diclofenac: study of the effect of the operating variables on degradation kinetics and the mineralization of the pollutant

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A study of the degradation of diclofenac (DCF) in an electrochemical reactor equipped with two carbon cloth (CC) electrodes operating in recirculation mode, is presented. The analysis of the effects of the operating variables on the degradation of the DCF showed that, as expected, the applied voltage has a direct influence on the reactions that take place at the anode and cathode. In fact, the addition of O2 and Fe(II) to the medium demonstrated that the electro-Fenton (EF) process was taking place and that under the following conditions, 4 V, 0.05 M Na2SO4, 50 mg/L DCF, 0.25 g Fe(II)-loaded resin, and 50 mL/min, 79.8% of DCF mineralization was obtained in a process described by a pseudo-first order kinetics (k = 0.0184 min−1). Using a simulated domestic wastewater effluent, the EF reactor under study not only showed a similar DCF mineralization value (81.8%), but also reasonable energy consumption (2.16 kWh/m3) as well as CC electrode stability upon several treatment cycles. These results suggest that an EF approach using low-cost CC electrodes and neutral pH conditions, constitute a technically and economically viable option for DCF wastewater treatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Arguello-Pérez M, ángel, Mendoza-Pérez JA, Tintos-Gómez A, Ramírez-Ayala E, Godínez-Domínguez E, de Silva-Bátiz F, (2019) A Ecotoxicological analysis of emerging contaminants from wastewater discharges in the Coastal Zone of Cihuatlán (Jalisco, Mexico). Water 11(7):1386. https://doi.org/10.3390/w11071386

    Article  CAS  Google Scholar 

  2. Samal K, Mahapatra S, Hibzur Ali M (2022) Pharmaceutical wastewater as emerging contaminants (EC): treatment technologies, impact on environment and human health. Energy Nexus 6:100076. https://doi.org/10.1016/j.nexus.2022.100076

    Article  CAS  Google Scholar 

  3. Castro L, Baños M, López M, Torres B (2015) Ecofarmacovigilancia en México: perspectivas para su implementación. Rev Mex Ciencias Farm 46:16–40

    Google Scholar 

  4. Shamsudin MS, Azha SF, Ismail S (2022) A review of diclofenac occurrences, toxicology, and potential adsorption of clay-based materials with surfactant modifier. J Environ Chem Eng 10:107541. https://doi.org/10.1016/j.jece.2022.107541

    Article  CAS  Google Scholar 

  5. Siemens J, Huschek G, Siebe C, Kaupenjohann M (2008) Concentrations and mobility of human pharmaceuticals in the world’s largest wastewater irrigation system, Mexico City-Mezquital Valley. Water Res 42:2124–2134. https://doi.org/10.1016/j.watres.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  6. Gibson R, Durán-Álvarez JC, Estrada KL, Chávez A, Jiménez Cisneros B (2010) Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley. Mexico Chemosphere 81:1437–1445. https://doi.org/10.1016/j.chemosphere.2010.09.006

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Vázquez-Tapia I, Salazar-Martínez T, Acosta-Castro M, Meléndez-Castolo KA, Mahlknecht J, Cervantes-Avilés P, Capparelli MV, Mora A (2022) Occurrence of emerging organic contaminants and endocrine disruptors in different water compartments in Mexico – A review. Chemosphere 308:136285. https://doi.org/10.1016/j.chemosphere.2022.136285

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Félix-Cañedo TE, Durán-Álvarez JC, Jiménez-Cisneros B (2013) The occurrence and distribution of a group of organic micropollutants in Mexico City’s water sources. Sci Total Environ 454–455:109–118. https://doi.org/10.1016/j.scitotenv.2013.02.088

    Article  CAS  PubMed  Google Scholar 

  9. Pérez-Alvarez I, Islas-Flores H, Gómez-Oliván LM, Barceló D, López De Alda M, Pérez Solsona S, Sánchez-Aceves L, SanJuan-Reyes N, Galar-Martínez M (2018) Determination of metals and pharmaceutical compounds released in hospital wastewater from Toluca, Mexico, and evaluation of their toxic impact. Environ Pollut 240:330–341. https://doi.org/10.1016/j.envpol.2018.04.116

    Article  CAS  PubMed  Google Scholar 

  10. Sandoval-González A, Robles I, Pineda-Arellano CA, Martínez-Sánchez C (2022) Removal of anti-inflammatory drugs using activated carbon from agro-industrial origin: current advances in kinetics, isotherms, and thermodynamic studies. J Iran Chem Soc 19:4017–4033. https://doi.org/10.1007/s13738-022-02588-7

    Article  CAS  Google Scholar 

  11. Guo H, Xu Z, Wang D, Chen S, Qiao D, Wan D, Xu H, Yan W, Jin X (2022) Evaluation of diclofenac degradation effect in active and non-active anodes: a new consideration about mineralization inclination. Chemosphere 286:131580. https://doi.org/10.1016/j.chemosphere.2021.131580

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Yuan Q, Qu S, Li R, Huo ZY, Gao Y, Luo Y (2023) Degradation of antibiotics by electrochemical advanced oxidation processes (EAOPs): performance, mechanisms, and perspectives. Sci Total Environ 856:159092. https://doi.org/10.1016/j.scitotenv.2022.159092

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Martínez-Sánchez C, Robles I, Godínez LA (2022) Review of recent developments in electrochemical advanced oxidation processes: application to remove dyes, pharmaceuticals, and pesticides. Int J Environ Sci Technol. 19:12611–12678

    Article  Google Scholar 

  14. Seibert D, Zorzo CF, Borba FH, de Souza RM, Quesada HB, Bergamasco R, Baptista AT, Inticher JJ (2020) Occurrence, statutory guideline values and removal of contaminants of emerging concern by Electrochemical Advanced oxidation processes: a review. Sci Total Environ 748:141527. https://doi.org/10.1016/j.scitotenv.2020.141527

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Long Y, Feng Y, Li X, Suo N, Chen H, Wang Z, Yu Y (2019) Removal of diclofenac by three-dimensional electro-Fenton-persulfate (3D electro-Fenton-PS). Chemosphere 219:1024–1031. https://doi.org/10.1016/j.chemosphere.2018.12.054

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Rosales E, Diaz S, Pazos M, Sanromán MA (2019) Comprehensive strategy for the degradation of anti-inflammatory drug diclofenac by different advanced oxidation processes. Sep Purif Technol 208:130–141. https://doi.org/10.1016/j.seppur.2018.04.014

    Article  CAS  Google Scholar 

  17. Pourzamani H, Hajizadeh Y, Mengelizadeh N (2018) Application of three-dimensional electrofenton process using MWCNTs-Fe3O4 nanocomposite for removal of diclofenac. Process Saf Environ Prot 119:271–284. https://doi.org/10.1016/j.psep.2018.08.014

    Article  CAS  Google Scholar 

  18. Yu F, Chen Y, Ma H (2018) Ultrahigh yield of hydrogen peroxide and effective diclofenac degradation on a graphite felt cathode loaded with CNTs and carbon black: an electro-generation mechanism and a degradation pathway. New J Chem 42:4485–4494. https://doi.org/10.1039/c7nj04925k

    Article  CAS  Google Scholar 

  19. Mussa ZH, Al-Qaim FF, Othman MR, Abdullah MP, Latip J, Zakria Z (2017) Pseudo first order kinetics and proposed transformation products pathway for the degradation of diclofenac using graphite–PVC composite as anode. J Taiwan Inst Chem Eng 72:37–44. https://doi.org/10.1016/j.jtice.2016.12.031

    Article  CAS  Google Scholar 

  20. Nidheesh PV, Gandhimathi R (2014) Effect of solution pH on the performance of three electrolytic advanced oxidation processes for the treatment of textile wastewater and sludge characteristics. RSC Adv 4:27946–27954. https://doi.org/10.1039/c4ra02958e

    Article  ADS  CAS  Google Scholar 

  21. Kumar A, Omar RA, Verma N (2020) Efficient electro-oxidation of diclofenac persistent organic pollutant in wastewater using carbon film-supported Cu-rGO electrode. Chemosphere 248:126030. https://doi.org/10.1016/j.chemosphere.2020.126030

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Fernández D, Robles I, Rodríguez-Valadez FJ, Godínez LA (2018) Novel arrangement for an electro-Fenton reactor that does not require addition of iron, acid and a final neutralization stage. Towards the development of a cost-effective technology for the treatment of wastewater. Chemosphere 199:251–255. https://doi.org/10.1016/j.chemosphere.2018.02.036

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. García-Espinoza JD, Robles I, Gil V, Becerril-Bravo E, Barrios JA, Godínez LA (2019) Electrochemical degradation of triclosan in aqueous solution. A study of the performance of an electro-Fenton reactor. J Environ Chem Eng 7:103228. https://doi.org/10.1016/j.jece.2019.103228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. García-Espinoza JD, Robles I, Durán-Moreno A, Godínez LA (2021) Study of simultaneous electro-Fenton and adsorption processes in a reactor containing porous carbon electrodes and particulate activated carbon. J Electroanal Chem 895:0–11. https://doi.org/10.1016/j.jelechem.2021.115476

    Article  CAS  Google Scholar 

  25. Zhu Q, Mao S (2019) Enhanced drug loading efficiency of contact lenses via salt-induced modulation. Asian J Pharm Sci 14:204–215. https://doi.org/10.1016/j.ajps.2018.05.002

    Article  PubMed  Google Scholar 

  26. Estrada-Arriaga EB, Mijaylova PN (2011) Influence of operational parameters (sludge retention time and hydraulic residence time) on the removal of estrogens by membrane bioreactor. Environ Sci Pollut Res 18:1121–1128. https://doi.org/10.1007/s11356-011-0461-0

    Article  CAS  Google Scholar 

  27. Ahmed MJ (2017) Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: review. J Environ Manage 190:274–282. https://doi.org/10.1016/j.jenvman.2016.12.073

    Article  CAS  PubMed  Google Scholar 

  28. Zhou X, Dong C, Yang Z, Tian Z, Lu L, Yang W, Wang Y, Zhang L, Li A, Chen J (2018) Enhanced adsorption of pharmaceuticals onto core-brush shaped aromatic rings-functionalized chitosan magnetic composite particles: effects of structural characteristics of both pharmaceuticals and brushes. J Clean Prod 172:1025–1034. https://doi.org/10.1016/j.jclepro.2017.10.207

    Article  Google Scholar 

  29. Larous S, Meniai AH (2016) Adsorption of Diclofenac from aqueous solution using activated carbon prepared from olive stones. Int J Hydrogen Energy 41:10380–10390. https://doi.org/10.1016/j.ijhydene.2016.01.096

    Article  CAS  Google Scholar 

  30. Wang Y, Chen M, Wang C, Meng X, Zhang W, Chen Z, Crittenden J (2019) Electrochemical degradation of methylisothiazolinone by using Ti/SnO2-Sb2O3/Α, Β-PbO2 electrode: kinetics, energy efficiency, oxidation mechanism and degradation pathway. Chem Eng J 374:626–636. https://doi.org/10.1016/j.cej.2019.05.217

    Article  CAS  Google Scholar 

  31. Gurung K, Ncibi MC, Shestakova M, Sillanpää M (2018) Removal of carbamazepine from MBR effluent by electrochemical oxidation (EO) using a Ti/Ta2O5-SnO2 electrode. Appl Catal B Environ 221:329–338. https://doi.org/10.1016/j.apcatb.2017.09.017

    Article  CAS  Google Scholar 

  32. Salazar C, Ridruejo C, Brillas E, Yáñez J, Mansilla HD, Sirés I (2017) Abatement of the fluorinated antidepressant fluoxetine (Prozac) and its reaction by-products by electrochemical advanced methods. Appl Catal B Environ 203:189–198. https://doi.org/10.1016/j.apcatb.2016.10.026

    Article  CAS  Google Scholar 

  33. García-Espinoza JD, Robles I, Durán-Moreno A, Godínez LA (2022) Study of the performance of a cylindrical flow-through electro-Fenton reactor using different arrangements of carbon felt electrodes: effect of key operating parameters. Environ Sci Pollut Res 29:42305–42318. https://doi.org/10.1007/s11356-021-18118-6

    Article  CAS  Google Scholar 

  34. Sadeghi M, Mehdinejad MH, Mengelizadeh N, Mahdavi Y, Pourzamani H, Hajizadeh Y, Zare MR (2019) Degradation of diclofenac by heterogeneous electro-Fenton process using magnetic single-walled carbon nanotubes as a catalyst. J Water Process Eng 31:100852. https://doi.org/10.1016/j.jwpe.2019.100852

    Article  Google Scholar 

  35. Jinisha R, Gandhimathi R, Ramesh ST, Nidheesh PV, Velmathi S (2018) Removal of rhodamine B dye from aqueous solution by electro-Fenton process using iron-doped mesoporous silica as a heterogeneous catalyst. Chemosphere 200:446–454. https://doi.org/10.1016/j.chemosphere.2018.02.117

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Periyasamy S, Muthuchamy M (2018) Electrochemical oxidation of Paracetamol in water by graphite anode: Effect of pH, electrolyte concentration and current density. J Environ Chem Eng 6:7358–7367. https://doi.org/10.1016/j.jece.2018.08.036

    Article  CAS  Google Scholar 

  37. da Silva SW, Navarro EMO, Rodrigues MAS, Bernardes AM, Pérez-Herranz V (2019) Using p-Si/BDD anode for the electrochemical oxidation of norfloxacin. J Electroanal Chem 832:112–120. https://doi.org/10.1016/j.jelechem.2018.10.049

    Article  CAS  Google Scholar 

  38. Moreira FC, Garcia-Segura S, Boaventura RAR, Brillas E, Vilar VJP (2014) Degradation of the antibiotic trimethoprim by electrochemical advanced oxidation processes using a carbon-PTFE air-diffusion cathode and a boron-doped diamond or platinum anode. Appl Catal B Environ 160–161:492–505. https://doi.org/10.1016/j.apcatb.2014.05.052

    Article  CAS  Google Scholar 

  39. Birjandi N, Younesi H, Ghoreyshi AA, Rahimnejad M (2016) Electricity generation through degradation of organic matters in medicinal herbs wastewater using bio-electro-fenton system. J Environ Manage 180:390–400. https://doi.org/10.1016/j.jenvman.2016.05.073

    Article  CAS  PubMed  Google Scholar 

  40. Robles I, Moreno-Rubio G, Garciá-Espinoza JD, Martínez-Sánchez C, Rodríguez A, Meas-Vong Y, Rodríguez-Valadez FJ, Godínez LA (2020) Study of polarized activated carbon filters as simultaneous adsorbent and 3D-type electrode materials for electro-Fenton reactors. J Environ Chem Eng 8:104414. https://doi.org/10.1016/j.jece.2020.104414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou M, Yu Q, Lei L, Barton G (2007) Electro-Fenton method for the removal of methyl red in an efficient electrochemical system. Sep Purif Technol 57:380–387. https://doi.org/10.1016/j.seppur.2007.04.021

    Article  CAS  Google Scholar 

  42. Treviño-Reséndez J, de Mijaylova Nacheva J, García-Espinoza P JD (2020) Influence of the operating parameters in the degradation of naphtalene and phenanthrene by electrooxidation. Rev Int Contam Ambient 36:21–32. https://doi.org/10.20937/RICA.2020.36.53225

    Article  Google Scholar 

  43. Loos G, Scheers T, Van Eyck K, Van Schepdael A, Adams E, Van der Bruggen B, Cabooter D, Dewil R (2018) Electrochemical oxidation of key pharmaceuticals using a boron doped diamond electrode. Sep Purif Technol 195:184–191. https://doi.org/10.1016/j.seppur.2017.12.009

    Article  CAS  Google Scholar 

  44. Pourzamani H, Mengelizadeh N, Hajizadeh Y, Mohammadi H (2018) Electrochemical degradation of diclofenac using three-dimensional electrode reactor with multi-walled carbon nanotubes. Environ Sci Pollut Res 25:24746–24763. https://doi.org/10.1007/s11356-018-2527-8

    Article  CAS  Google Scholar 

  45. Bañuelos JA, García-Rodríguez O, Rodríguez-Valadez FJ, Manríquez J, Bustos E, Rodríguez A, Godínez LA (2015) Cathodic polarization effect on the electro-Fenton regeneration of activated carbon. J Appl Electrochem 45:523–531. https://doi.org/10.1007/s10800-015-0815-2

    Article  CAS  Google Scholar 

  46. Zhao Y, Ma Y, Li T, Dong Z, Wang Y (2018) Modification of carbon felt anodes using double-oxidant HNO3/H2O2 for application in microbial fuel cells. RSC Adv 8:2059–2064. https://doi.org/10.1039/c7ra12923h

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Trogadas P, Taiwo OO, Tjaden B, Neville TP, Yun S, Parrondo J, Ramani V, Coppens MO, Brett DJL, Shearing PR (2014) X-ray micro-tomography as a diagnostic tool for the electrode degradation in vanadium redox flow batteries. Electrochem Commun 48:155–159. https://doi.org/10.1016/j.elecom.2014.09.010

    Article  CAS  Google Scholar 

  48. Casimero C, Hegarty C, McGlynn RJ, Davis J (2020) Ultrasonic exfoliation of carbon fiber: electroanalytical perspectives. J Appl Electrochem 50:383–394. https://doi.org/10.1007/s10800-019-01379-y

    Article  CAS  Google Scholar 

  49. dos Santos AJ, Fajardo AS, Kronka MS, Garcia-Segura S, Lanza MRV (2021) Effect of electrochemically-driven technologies on the treatment of endocrine disruptors in synthetic and real urban wastewater. Electrochim Acta 376:138034. https://doi.org/10.1016/j.electacta.2021.138034

    Article  CAS  Google Scholar 

  50. Brillas E, Garcia-Segura S, Skoumal M, Arias C (2010) Electrochemical incineration of diclofenac in neutral aqueous medium by anodic oxidation using pt and boron-doped diamond anodes. Chemosphere 79:605–612. https://doi.org/10.1016/j.chemosphere.2010.03.004

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Yu F, Wang Y, Ma H, Zhou M (2020) Hydrothermal synthesis of FeS2 as a highly efficient heterogeneous electro-Fenton catalyst to degrade diclofenac via molecular oxygen effects for Fe(II)/Fe(III) cycle. Sep Purif Technol 248:117022. https://doi.org/10.1016/j.seppur.2020.117022

    Article  CAS  Google Scholar 

  52. Wang C, Yu Y, Yin L, Niu J, Hou LA (2016) Insights of ibuprofen electro-oxidation on metal-oxide-coated Ti anodes: kinetics, energy consumption and reaction mechanisms. Chemosphere 163:584–591. https://doi.org/10.1016/j.chemosphere.2016.08.057

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical support provided by Ana Iris Peña-Maldonado from LINAN-IPICyT.

Funding

The authors thank to the National Council of Humanities, Sciences and Technologies (CONAHCYT, PENTA 2019–1–303758) for the financial support to this work. O. Romero-Espinoza thanks CONAHCYT for a graduate fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Funding was obtained by I.R., data collection and analysis were made by O.R. and C.M., electrode characterization were made by V.R., writing-review and editing was carried out by L.A.G., I.R and C.M. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Carolina Martínez-Sánchez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors consent to publish this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero-Espinoza, O., Robles, I., Godínez, L.A. et al. Electro-Fenton degradation of diclofenac: study of the effect of the operating variables on degradation kinetics and the mineralization of the pollutant. J Appl Electrochem (2024). https://doi.org/10.1007/s10800-024-02074-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10800-024-02074-3

Keywords

Navigation