Skip to main content
Log in

Aiming to a smart agriculture through the electrochemical impedance of a chitosan-molybdate membrane as a function of available phosphate species

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Identifying and quantifying accessible nutrients in the soil are critical in agriculture since plants require particular amounts of micro and macronutrients to grow successfully. However, there is no well-defined method for quantifying macronutrients in the field at present. In this work, chitosan and chitosan-molybdate membranes were deposited onto stainless steel (SS) and carbon (C) substrates and evaluated as promising candidates for the quantification of phosphorous species available in cultivated soil. The membranes were morphologically and structurally studied by atomic force microscopy and infrared spectroscopy to determine their appearance, roughness, and chemical conformation. Electrochemical impedance spectroscopy was the electrochemical tool used to evaluate the quantification capacity of phosphorus species of the membrane-based electrodes; it was found that the chitosan-molybdate membranes deposited onto the SS/C interface presented the best performance when the electrodes change in charge transfer resistance and chemical capacitance were measured as a function of the concentration of phosphorus species available in a synthetic sample. Thus, based on the presented results, chitosan biosensors have shown the capability of attracting ionic species, which contributes to the minimization of preference zones on the surface of a sensing electrode.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. León-Fernández V, Thouron D, Paulmier A et al (2011) Phosphate determination in seawater: toward an autonomous electrochemical method. Talanta 87:161–167. https://doi.org/10.1016/j.talanta.2011.09.056

    Article  CAS  PubMed  Google Scholar 

  2. Paytan A, Mclaughlin K (2007) The oceanic phosphorus cycle. Chem Rev 107:563–576. https://doi.org/10.1021/cr0503613

    Article  CAS  PubMed  Google Scholar 

  3. Azadi H, Movahhed S, Burkart S et al (2021) Rethinking resilient agriculture : from climate-smart agriculture to vulnerable-smart agriculture. J Clean Prod 319:128602. https://doi.org/10.1016/j.jclepro.2021.128602

    Article  Google Scholar 

  4. Gil G, Casagrande DE, Pérez-Cortés L, Verschae R (2023) Why the low adoption of robotics in the farms ? Challenges for the establishment of commercial agricultural robots. Smart Agric Technol 3:100069. https://doi.org/10.1016/j.atech.2022.100069

    Article  Google Scholar 

  5. Gebresenbet G, Bosona T, Patterson D et al (2023) A concept for application of integrated digital technologies to enhance future smart agricultural systems. Smart Agric Technol 5:100255. https://doi.org/10.1016/j.atech.2023.100255

    Article  Google Scholar 

  6. Abbasi R, Martinez P, Ahmad R (2022) The digitization of agricultural industry—a systematic literature review on agriculture 4.0. Smart Agric Technol 2:100042. https://doi.org/10.1016/j.atech.2022.100042

    Article  Google Scholar 

  7. Islam N, Dmour I, Taha MO (2019) Degradability of chitosan micro/nanoparticles for pulmonary drug delivery. Heliyon 5:e01684. https://doi.org/10.1016/j.heliyon.2019.e01684

    Article  PubMed  PubMed Central  Google Scholar 

  8. Padilla-Quintero BC, Cardona-Trujillo V, Muñoz G et al (2017) Preparation and characterization of chitosan based gels for possible biomedical applications. Rev Ciencias 21:91–99. https://doi.org/10.25100/rc.v21i1.6349

    Article  Google Scholar 

  9. El Amerany F, Rhazi M, Wahbi S et al (2020) The effect of chitosan, arbuscular mycorrhizal fungi, and compost applied individually or in combination on growth, nutrient uptake, and stem anatomy of tomato. Sci Hortic (Amsterdam) 261:109015. https://doi.org/10.1016/j.scienta.2019.109015

    Article  CAS  Google Scholar 

  10. Berger LR, Stamford NP, Santos CERS et al (2013) Plant and soil characteristics affected by biofertilizers from rocks and organic matter inoculated with diazotrophic bacteria and fungi that produce chitosan. J Soil Sci Plant Nutr 13:592–603. https://doi.org/10.4067/S0718-95162013005000047

    Article  Google Scholar 

  11. Filipkowska U, Szymczyk P, Mielcarek A, Jóźwiak T (2019) Sorption of nutrients ( orthophosphate, nitrate III and V ) in an equimolar mixture of P – PO 4, N – NO 2 and N – NO 3 using chitosan. Arab J Chem 12:4104–4117. https://doi.org/10.1016/j.arabjc.2016.04.008

    Article  CAS  Google Scholar 

  12. Campbell NA, Reece JB (2007) Biología, Septima ed. Editorial Médica Panamericana, Madrid, España

  13. Piccin R, Kaminski J, Ceretta CA et al (2017) Distribution and redistribution of phosphorus forms in grapevines. Sci Hortic (Amsterdam) 218:125–131. https://doi.org/10.1016/j.scienta.2017.02.023

    Article  CAS  Google Scholar 

  14. Wild A (1988) Plant nutrients in soil: phosphate. In A. Wild (ed), New York

  15. Kolliopoulos AV, Kampouris DK, Banks CE (2015) Rapid and portable electrochemical quantification of phosphorus. Anal Chem 87:4269–42774. https://doi.org/10.1021/ac504602a

    Article  CAS  PubMed  Google Scholar 

  16. Murphy J, Riley JP (1962) A modificated single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  17. Ferreira FTSM, Mesquita LS, Mesquita RBR, Rangel AOSS (2020) Improved sequential injection method for phosphate quantification within a wide dynamic range with in-line pre-concentration to monitor soil leachates. Talanta Open 2:100015. https://doi.org/10.1016/j.talo.2020.100015

    Article  Google Scholar 

  18. Priyanka D, Viprav C, Sarmistha P, Satya Sundar B, Pabitra N (2022) Detection and quantification of phosphate in water and soil using a smartphone. Microchem J 172:106949. https://doi.org/10.1016/j.microc.2021.106949

    Article  CAS  Google Scholar 

  19. Saleh AM, El-soud WMA, Alotaibi MO et al (2023) Chitosan nanoparticles support the impact of arbuscular mycorrhizae fungi on growth and sugar metabolism of wheat crop. Int J Biol Macromol 235:123806. https://doi.org/10.1016/j.ijbiomac.2023.123806

    Article  CAS  PubMed  Google Scholar 

  20. Palacios YM, Gleadow R, Davidson C et al (2021) Do mycorrhizae increase plant growth and pollutant removal in stormwater biofilters? Water Res 202:117381. https://doi.org/10.1016/j.watres.2021.117381

    Article  CAS  PubMed  Google Scholar 

  21. Elgharably A, Allam Nafady N (2021) Inoculation with Arbuscular mycorrhizae, Penicillium funiculosum, and Fusarium oxysporum enhanced wheat growth and nutrient uptake in the saline soil. Rhizosphere 18:100345. https://doi.org/10.1016/j.rhisph.2021.100345

    Article  Google Scholar 

  22. Rajeswari A, Amalraj A, Pius A (2015) Removal of phosphate using chitosan-polymer composites. Elsevier BV 3:2331–2341. https://doi.org/10.1016/j.jece.2015.08.022

    Article  CAS  Google Scholar 

  23. Filipkowska U, Jóźwiak T, Szymczyk P (2014) Application of cross-linked chitosan for phosphate removal from aqueous solutions. Prog Chem Appl Chitin Deriv 19:5–14. https://doi.org/10.15259/PCACD.19.01

    Article  Google Scholar 

  24. Demirci S, Alaslan A, Caykara T (2009) Preparation, characterization and surface pKa values of poly(N-vinyl-2-pyrrolidone)/chitosan blend film. Appl Surf Sci 255:5979–5983. https://doi.org/10.1016/j.apsusc.2009.01.050

    Article  ADS  CAS  Google Scholar 

  25. Wadhwa S, Paliwal R, Paliwal SR, Vyas SP (2009) Chitosan and its role in ocular therapeutics. Mini-reviews. Med Chem 9:1639–1647. https://doi.org/10.2174/138955709791012292

    Article  CAS  Google Scholar 

  26. Chung YC, Tsai CF, Li CF (2006) Preparation and characterization of water-soluble chitosan produced by Maillard reaction. Fish Sci 72:1096–1103. https://doi.org/10.1111/j.1444-2906.2006.01261.x

    Article  CAS  Google Scholar 

  27. Swain SK, Dey RK, Islam M et al (2009) Removal of fluoride from aqueous solution using aluminum-impregnated chitosan biopolymer. Sep Sci Technol 44:2096–2116. https://doi.org/10.1080/01496390902881212

    Article  CAS  Google Scholar 

  28. Kumirska J, Czerwicka M, Kaczyński Z et al (2010) Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar Drugs 8:1567–1636. https://doi.org/10.3390/md8051567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tantala J, Thumanu K, Rachtanapun C (2019) An assessment of antibacterial mode of action of chitosan on Listeria innocua cells using real-time HATR-FTIR spectroscopy. Int J Biol Macromol 135:386–393. https://doi.org/10.1016/j.ijbiomac.2019.05.032

    Article  CAS  PubMed  Google Scholar 

  30. Bai Y, Tong J, Wang J et al (2014) Electrochemical microsensor based on gold nanoparticles modified electrode for total phosphorus determinations in water. IET Nanobiotechnol 8:31–36

    Article  CAS  PubMed  Google Scholar 

  31. Soares C, Machado Tenreiro JA, A. M. L, et al. (2020) Electrochemical impedance spectroscopy characterization of beverages. Food Chem 302:125345. https://doi.org/10.1016/j.snb.2020.127753

Download references

Acknowledgements

The authors thank the Tecnologico Nacional de México/I.T. Tijuana for providing the facilities for this research. M.A. Beltrán-Ortega would like to thank CONAHCyT for the scholarship for her doctorate science research.

Author information

Authors and Affiliations

Authors

Contributions

MAB-O: carried out the experimental work, wrote the main manuscript, and prepared figures. MTO-G: advised the experimental work, and contributed to the discussion of the results. JCC-Y: supported the characterization of the materials and contributed to the discussion of the results 1–3. All Authors reviewed the manuscript.

Corresponding author

Correspondence to J. C. Calva-Yáñez.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beltrán-Ortega, M.A., Oropeza-Guzmán, M.T. & Calva-Yáñez, J.C. Aiming to a smart agriculture through the electrochemical impedance of a chitosan-molybdate membrane as a function of available phosphate species. J Appl Electrochem 54, 905–915 (2024). https://doi.org/10.1007/s10800-023-02002-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-02002-x

Keywords

Navigation