Skip to main content

Advertisement

Log in

A label-free electrochemical immunosensor based on AuNPs/Zn/Ni-ZIF-8-800@graphene for the detection of wheat gliadin

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Wheat gliadin is thought to be the main cause of wheat allergy leading to celiac disease. In this study, we reported an electrochemical immunosensor based on AuNPs/Zn/Ni-ZIF-8-800@graphene for simple, efficient, and sensitive detection of gliadin. A monoclonal antibody against gliadin were prepared by hybridoma technique. Zn/Ni-ZIF-8-800 with high stability was prepared by using zinc–nickel bimetallic organic framework MOFs, and graphene and gold nanoparticles with large surface area and excellent conductivity were introduced. Chitosan was used as a binder to fixed the composite on the surface of glassy carbon electrode. The fabricated materials and the corresponding sensors were comprehensively characterized by X-ray diffractometer, scanning electron microscope, transmission electron microscopy, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller, and cyclic voltammetry analyses. Under the optimal conditions, the linear range of the electrochemical immunosensor was 0.1–100 μg mL−1, and the detection limit was 0.950 μg mL−1. In addition, the fabricated sensor exhibited high selectivity and long-term stability. The recovery test showed that the prepared sensor was suitable for the detection of gliadin in real food and feed, exhibiting great promising of the developed sensor in practical application.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Steffolani ME, Ribotta PD, Pérez GT, León AE (2010) Effect of glucose oxidase, transglutaminase, and pentosanase on wheat proteins: relationship with dough properties and bread-making quality. J Cereal Sci 51:366–373. https://doi.org/10.1016/j.jcs.2010.01.010

    Article  CAS  Google Scholar 

  2. Ekezie F-GC, Cheng J-H, Sun D-W (2018) Effects of nonthermal food processing technologies on food allergens: a review of recent research advances. Trends Food Sci Technol 74:12–25. https://doi.org/10.1016/j.tifs.2018.01.007

    Article  CAS  Google Scholar 

  3. Biagi F, Zimmer K, Thomas P, Ellis H, Ciclitira PJ (1999) Is gliadin mispresented to the immune system in coeliac disease? A hypothesis. QJM Int J Med 92:119–122. https://doi.org/10.1093/qjmed/92.2.119

    Article  CAS  Google Scholar 

  4. Ludvigsson JF, Leffler DA, Bai JC, Biagi F, Fasano A et al (2013) The Oslo definitions for coeliac disease and related terms. Gut 62:43–52. https://doi.org/10.1136/gutjnl-2011-301346

    Article  PubMed  Google Scholar 

  5. Walker MM, Ludvigsson JF, Sanders DS (2017) Coeliac disease: review of diagnosis and management. Med J Aust 207:173–178. https://doi.org/10.5694/mja16.00788

    Article  PubMed  Google Scholar 

  6. Dieckman T, Koning F, Bouma G (2022) Celiac disease: new therapies on the horizon. Curr Opin Pharmacol 66:102268. https://doi.org/10.1016/j.coph.2022.102268

    Article  CAS  PubMed  Google Scholar 

  7. Lammers KM, Herrera MG, Dodero VI (2018) Translational chemistry meets gluten-related disorders. ChemistryOpen 7:217–232. https://doi.org/10.1002/open.201700197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lowrie M, Garden O, Hadjivassiliou M, Harvey RJ, Sanders D, Powell R, Garosi L (2015) The clinical and serological effect of a gluten-free diet in border terriers with epileptoid cramping syndrome. J Vet Intern Med 29:1564–1568. https://doi.org/10.1111/jvim.13643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Daminet SC (1996) Gluten-sensitive enteropathy in a family of Irish setters. Can Vet J 37:745

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Schleicher M, Cash SB, Freeman LM (2019) Determinants of pet food purchasing decisions. Can Vet J 60:644

    PubMed  PubMed Central  Google Scholar 

  11. Schubert-Ullrich P, Rudolf J, Ansari P, Galler B, Führer M, Molinelli A, Baumgartner S (2009) Commercialized rapid immunoanalytical tests for determination of allergenic food proteins: an overview. Anal Bioanal Chem 395:69–81. https://doi.org/10.1007/s00216-009-2715-y

    Article  CAS  PubMed  Google Scholar 

  12. Skerritt JH, Hill AS (1990) Monoclonal antibody sandwich enzyme immunoassays for determination of gluten in foods. J Agric Food Chem 38:1771–1778. https://doi.org/10.1021/jf00098a029

    Article  CAS  Google Scholar 

  13. Valdés I, García E, Llorente M, Méndez E (2003) Innovative approach to low-level gluten determination in foods using a novel sandwich enzyme-linked immunosorbent assay protocol. Eur J Gastroenterol Hepatol 15:465–747. https://doi.org/10.1097/01.meg.0000059119.41030.df

    Article  CAS  PubMed  Google Scholar 

  14. van den Broeck H, Hongbing C, Lacaze X, Dusautoir J-C, Gilissen L, Smulders M, van der Meer I (2010) In search of tetraploid wheat accessions reduced in celiac disease-related gluten epitopes. Mol Biosyst 6:2206–2213. https://doi.org/10.1039/C0MB00046A

    Article  PubMed  Google Scholar 

  15. Camafeita E, Alfonso P, Mothes T, Méndez E (1997) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric micro-analysis: the first non-immunological alternative attempt to quantify gluten gliadins in food samples. J Mass Spectrom 32:940–947. https://doi.org/10.1002/(SICI)1096-9888(199709)32:9%3c940::AID-JMS550%3e3.0.CO;2-2

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Mujico JR, Lombardía M, Mena MC, Méndez E, Albar JP (2011) A highly sensitive real-time PCR system for quantification of wheat contamination in gluten-free food for celiac patients. Food Chem 128:795–801. https://doi.org/10.1016/j.foodchem.2011.03.061

    Article  CAS  Google Scholar 

  17. Talib NAA, Abidin SNJSZ, Salam F, Sulaiman Y (2016) Clenbuterol immunosensors based poly (3, 4-ethylenedioxythiophene)/multiwall carbon nanotube (PEDOT/MWCNT) hybrid composite. Procedia Chem 20:29–32. https://doi.org/10.1016/j.proche.2016.07.004

    Article  CAS  Google Scholar 

  18. Wang C, Hu L, Zhao K, Deng A, Li J (2018) Multiple signal amplification electrochemiluminescent immunoassay for Sudan I using gold nanorods functionalized graphene oxide and palladium/aurum core-shell nanocrystallines as labels. Electrochim Acta 278:352–362. https://doi.org/10.1016/j.electacta.2018.05.061

    Article  CAS  Google Scholar 

  19. Abdallah ZB, Grauby-Heywang C, Beven L, Cassagnere S, Moroté F, Maillard E, Sghaier H, Bouhacina TC (2019) Development of an ultrasensitive label-free immunosensor for fungal aflatoxin B1 detection. Biochem Eng J 150:107262. https://doi.org/10.1016/j.bej.2019.107262

    Article  CAS  Google Scholar 

  20. Chen HA, Zhang JL, Huang R, Wang DJ, Deng DM, Zhang QX, Luo LQ (2023) The applications of electrochemical immunosensors in the detection of disease biomarkers: a review. Molecules 28:20. https://doi.org/10.3390/molecules28083605

    Article  CAS  Google Scholar 

  21. Wang H-F, Chen L, Pang H, Kaskel S, Xu Q (2020) MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem Soc Rev 49:1414–1448. https://doi.org/10.1039/C9CS00906J

    Article  CAS  PubMed  Google Scholar 

  22. Li B, Wen HM, Cui Y, Zhou W, Qian G, Chen B (2016) Emerging multifunctional metal–organic framework materials. Adv Mater 28:8819–8860. https://doi.org/10.1002/adma.201601133

    Article  CAS  PubMed  Google Scholar 

  23. Shen K, Zhang L, Chen X, Liu L, Zhang D, Han Y, Chen J, Long J, Luque R, Li Y, Chen B (2018) Ordered macro–microporous metal–organic framework single crystals. Science 359:206–210. https://doi.org/10.1126/science.aao3403

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 103:10186–10191. https://doi.org/10.1073/pnas.0602439103

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Qiu M, He C (2019) Efficient removal of heavy metal ions by forward osmosis membrane with a polydopamine modified zeolitic imidazolate framework incorporated selective layer. J Hazard Mater 367:339–347. https://doi.org/10.1016/j.jhazmat.2018.12.096

    Article  CAS  PubMed  Google Scholar 

  26. Chen L, Guo H, Fujita T, Hirata A, Zhang W, Inoue A, Chen M (2011) Nanoporous PdNi bimetallic catalyst with enhanced electrocatalytic performances for electro-oxidation and oxygen reduction reactions. Electrochim Acta 21:4364–4370. https://doi.org/10.1002/adfm.201101227

    Article  CAS  Google Scholar 

  27. Wu H, Li M, Wang Z, Yu H, Han J, Xie G, Chen S (2019) Highly stable Ni-MOF comprising triphenylamine moieties as a high-performance redox indicator for sensitive aptasensor construction. Anal Chim Acta 1049:74–81. https://doi.org/10.1016/j.aca.2018.10.022

    Article  CAS  PubMed  Google Scholar 

  28. Liu XZ, Yang HP, Diao YY, He Q, Lu CY, Singh A, Kumar A, Liu JQ, Lan Q (2022) Recent advances in the electrochemical applications of Ni-based metal organic frameworks (Ni-MOFs) and their derivatives. Chemosphere 307:18. https://doi.org/10.1016/j.chemosphere.2022.135729

    Article  CAS  Google Scholar 

  29. Drachuk I, Harbaugh S, Chávez JL, Kelley-Loughnane N (2020) Improving the activity of DNA-encoded sensing elements through confinement in silk microcapsules. ACS Appl Mater Interfaces 12:48329–48339. https://doi.org/10.1021/acsami.0c13713

    Article  CAS  PubMed  Google Scholar 

  30. Sayhi M, Ouerghi O, Belgacem K, Arbi M, Tepeli Y, Ghram A, Anik Ü, Österlund L, Laouini D, Diouani MF (2018) Electrochemical detection of influenza virus H9N2 based on both immunomagnetic extraction and gold catalysis using an immobilization-free screen printed carbon microelectrode. Biosens Bioelectron 107:170–177. https://doi.org/10.1016/j.bios.2018.02.018

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Wang XP, Gao TG, Lou CX, Wang HF, Liu YF, Cao AN (2022) Folding of flexible protein fragments and design of nanoparticle-based artificial antibody targeting lysozyme. J Phys Chem B 126(27):5045–5054. https://doi.org/10.1021/acs.jpcb.2c03200

    Article  CAS  PubMed  Google Scholar 

  32. Li R, Ren X, Feng X, Li X, Hu C, Wang B (2014) A highly stable metal- and nitrogen-doped nanocomposite derived from Zn/Ni-ZIF-8 capable of CO2 capture and separation. Chem Commun 50:6894–6897. https://doi.org/10.1039/C4CC01087F

    Article  CAS  Google Scholar 

  33. Jiang X, He S, Han G, Long J, Li S, Lau CH, Zhang S, Shao L (2021) Aqueous one-step modulation for synthesizing monodispersed ZIF-8 nanocrystals for mixed-matrix membrane. ACS Appl Mater Interfaces 13:11296–11305. https://doi.org/10.1021/acsami.0c22910

    Article  CAS  PubMed  Google Scholar 

  34. Kim H, Trinh BT, Kim KH, Moon J, Kang H et al (2021) Au@ ZIF-8 SERS paper for food spoilage detection. Biosens Bioelectron 179:113063. https://doi.org/10.1016/j.bios.2021.113063

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y, Zhang Z, Rong S, Yu H, Gao H, Ding P, Chang D, Pan H (2020) Electrochemical immunoassay for the carcinoembryonic antigen based on Au NPs modified zeolitic imidazolate framework and ordered mesoporous carbon. Microchim Acta 187:1–9. https://doi.org/10.1007/s00604-020-04235-5

    Article  CAS  ADS  Google Scholar 

  36. Kaur H, Mohanta GC, Gupta V, Kukkar D, Tyagi S (2017) Synthesis and characterization of ZIF-8 nanoparticles for controlled release of 6-mercaptopurine drug. J Drug Deliv Sci Technol 41:106–112. https://doi.org/10.1016/j.jddst.2017.07.004

    Article  CAS  Google Scholar 

  37. Zhang W, Liu S, Zhang Y, Ding X, Jiang B, Zhang Y (2019) An electrochemical sensor based on electro-polymerization of caffeic acid and Zn/Ni-ZIF-8-800 on glassy carbon electrode for the sensitive detection of acetaminophen. Biosens Bioelectron 131:200–206. https://doi.org/10.1016/j.bios.2019.01.069

    Article  CAS  PubMed  Google Scholar 

  38. Wu Y, Xu W, Wang Y, Yuan Y, Yuan R (2013) Silver–graphene oxide nanocomposites as redox probes for electrochemical determination of α-1-fetoprotein. Electrochim Acta 88:135–140. https://doi.org/10.1016/j.electacta.2012.10.081

    Article  CAS  Google Scholar 

  39. Rouf TB, Díaz-Amaya S, Stanciu L, Kokini J (2020) Application of corn zein as an anchoring molecule in a carbon nanotube enhanced electrochemical sensor for the detection of gliadin. Food Control 117:107350. https://doi.org/10.1016/j.electacta.2012.10.081

    Article  CAS  Google Scholar 

  40. Rahemi V, Vandamme J, Garrido J, Borges F, Brett C, Garrido E (2012) Enhanced host–guest electrochemical recognition of herbicide MCPA using a β-cyclodextrin carbon nanotube sensor. Talanta 99:288–293. https://doi.org/10.1016/j.talanta.2012.05.053

    Article  CAS  PubMed  Google Scholar 

  41. Saum A, Cumming R, Rowell FJ (2000) Detection of protease activity in the wetted surface of gelatin-coated electrodes in air by AC impedance spectroscopy. Biosens Bioelectron 15:305–313. https://doi.org/10.1016/S0956-5663(00)00068-3

    Article  CAS  PubMed  Google Scholar 

  42. Codex Standard 118-1979. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B118-1979%252FCXS_118e_2015.pdf. Accessed 2 Aug 2023

  43. Valdes I, Garcia E, Llorente M, Mendez E (2003) Innovative approach to low-level gluten determination in foods using a novel sandwich enzyme-linked immunosorbent assay protocol. Eur J Gastroenterol Hepatol 15:465–474. https://doi.org/10.1097/01.meg.0000059119.41030.df

    Article  CAS  PubMed  Google Scholar 

  44. Garcia-Garcia A, Madrid R, Sohrabi H, de la Cruz S, Garcia T, Martin R, Gonzalez I (2019) A sensitive and specific real-time PCR targeting DNA from wheat, barley and rye to track gluten contamination in marketed foods. LWT Food Sci Technol 114:108378. https://doi.org/10.1016/j.lwt.2019.108378

    Article  CAS  Google Scholar 

  45. Benitez M, Zubiate P, Socorro-Leranoz AB, Matias IR (2023) Lossy mode resonance-based optical immunosensor towards detecting gliadin in aqueous solutions. Food Control 147:109624. https://doi.org/10.1016/j.foodcont.2023.109624

    Article  CAS  Google Scholar 

  46. Liao Y-S, Kuo J-H, Chen B-L, Tsuei H-W, Lin C-Y, Lin HY, Cheng H-F (2017) Development and validation of the detection method for wheat and barley glutens using mass spectrometry in processed foods. Food Anal Methods 10:2839–2847. https://doi.org/10.1007/s12161-017-0827-0

    Article  Google Scholar 

  47. Hnasko RM, Jackson ES, Lin AV, Haff RP, McGarvey JA (2021) A rapid and sensitive lateral flow immunoassay (LFIA) for the detection of gluten in foods. Food Chem 355:129514. https://doi.org/10.1016/j.foodchem.2021.129514

    Article  CAS  PubMed  Google Scholar 

  48. Svigelj R, Zuliani I, Grazioli C, Dossi N, Toniolo R (2022) An effective label-free electrochemical aptasensor based on gold nanoparticles for gluten detection. Nanomaterials 12(6):987. https://doi.org/10.3390/nano12060987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Corpuz A, Khumsap T, Bamrungsap S, Thu VT, Nguyen LT (2023) Epitope-imprinted polydopamine and reduced graphene oxide-based sensing interface for label-free detection of gliadin. J Food Compos Anal 51(3):366–373. https://doi.org/10.1016/j.jfca.2022.105090

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by Open Project of Key Laboratory of Animal Immunology of the Ministry of Agriculture (PKLA20170606).

Author information

Authors and Affiliations

Authors

Contributions

KZ, NW and QL conceived and designed the experiments. KZ, YD, CC and SL performed the experiments. YD, GX, HR and CX contributed data analysis. KZ wrote the manuscript. KZ, NW, FW and CX revised the manuscript content. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Chao Xu or Na Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, K., Du, Y., Liu, Q. et al. A label-free electrochemical immunosensor based on AuNPs/Zn/Ni-ZIF-8-800@graphene for the detection of wheat gliadin. J Appl Electrochem 54, 669–685 (2024). https://doi.org/10.1007/s10800-023-01978-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01978-w

Keywords

Navigation