Skip to main content
Log in

Development and Validation of the Detection Method for Wheat and Barley Glutens Using Mass Spectrometry in Processed Foods

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Currently, the only effective treatment for coeliac disease is a gluten-free (GF) diet to avoid gluten-containing food intake. However, the current enzyme-linked immunosorbent assay (ELISA) method for detecting gluten lacks the ability to precisely detect and quantify gluten in fermented and hydrolyzed foods. The purpose of this study was to use liquid chromatography-tandem mass spectrometry (LC-MS/MS) to develop a robust and stable method for gliadin and hordein detection when assessing food safety. This study successfully extracted hordein from barley flour to use as a reference standard. Liquid chromatography/quadrupole time-of-flight mass spectrometer (LC/Q-TOF/MS) performed an analysis to identify unique marker peptides from gliadin and hordein. For determining the limit of detection of gluten in GF products, gliadin and hordein were spiked into GF products at concentrations of 1–100 mg/kg with isotope-labeled peptides as internal standards (IS). The developed method enabled the detection of 2.5 mg/kg of wheat and barley gluten in GF products. Finally, compared with the immunochemical method, the ability for the MS-based method to detect and quantify gluten content from fermented and hydrolyzed foods was unaffected and demonstrated the potential to analyze suspected gluten-contaminated foods to assess product safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abadie V, Sollid LM, Barreiro LB, Jabri B (2011) Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu Rev Immunol 29:493–525. doi:10.1146/annurev-immunol-040210-092915

    Article  CAS  Google Scholar 

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207. doi:10.1038/nature01511

    Article  CAS  Google Scholar 

  • Allred LK, Sealey Voyksner JA, Voyksner RD (2014) Evaluation of qualitative and quantitative immunoassays to detect barley contamination in gluten-free beer with confirmation using LC/MS/MS. J AOAC Int 97:1615–1625. doi:10.5740/jaoacint.14-058

    Article  CAS  Google Scholar 

  • Altenbach SB, Vensel WH, DuPont FM (2010) Analysis of expressed sequence tags from a single wheat cultivar facilitates interpretation of tandem mass spectrometry data and discrimination of gamma gliadin proteins that may play different functional roles in flour. BMC Plant Biol 10:7. doi:10.1186/1471-2229-10-7

    Article  Google Scholar 

  • Balakireva AV, Zamyatnin AA (2016) Properties of gluten intolerance: gluten structure, evolution, pathogenicity and detoxification capabilities. Nutrients. doi:10.3390/nu8100644

    Google Scholar 

  • Bernardo D, Peña AS (2012) Developing strategies to improve the quality of life of patients with gluten intolerance in patients with and without coeliac disease. Eur J Intern Med 23:6–8. doi:10.1016/j.ejim.2011.09.016

    Article  CAS  Google Scholar 

  • Biesiekierski JR, Newnham ED, Irving PM et al (2011) Gluten causes gastrointestinal symptoms in subjects without celiac disease: a double-blind randomized placebo-controlled trial. Am J Gastroenterol 106:508–514 . doi:10.1038/ajg.2010.487quiz 515

    Article  CAS  Google Scholar 

  • Chait BT (2006) Mass spectrometry: bottom-up or top-down? Science 314:65–66. doi:10.1126/science.1133987

    Article  CAS  Google Scholar 

  • Ciclitira PJ, Ellis HJ, Lundin KEA (2005) Gluten-free diet—what is toxic? Best Pract Res Clin Gastroenterol 19:359–371. doi:10.1016/j.bpg.2005.01.003

    Article  Google Scholar 

  • Codex Alimentarius Commission (2015) STAN 118–1979, Revised 2015

  • Colgrave ML, Goswami H, Howitt CA, Tanner GJ (2012) What is in a beer? Proteomic characterization and relative quantification of hordein (gluten) in beer. J Proteome Res 11:386–396. doi:10.1021/pr2008434

    Article  CAS  Google Scholar 

  • Colgrave ML, Goswami H, Blundell M et al (2014) Using mass spectrometry to detect hydrolysed gluten in beer that is responsible for false negatives by ELISA. J Chromatogr A 1370:105–114. doi:10.1016/j.chroma.2014.10.033

    Article  CAS  Google Scholar 

  • Comino I, Real A, de Lorenzo L et al (2011) Diversity in oat potential immunogenicity: basis for the selection of oat varieties with no toxicity in coeliac disease. Gut 60:915–922. doi:10.1136/gut.2010.225268

    Article  CAS  Google Scholar 

  • Commission Regulation HAT (2009) COMMISSION REGULATION (EC) No 1201/2009. Off J Eur Union L 329:29

    Google Scholar 

  • Denery-Papini S, Nicolas Y, Popineau Y (1999) Efficiency and limitations of immunochemical assays for the testing of gluten-free foods. J Cereal Sci 30:121–131. doi:10.1006/jcrs.1999.0268

    Article  CAS  Google Scholar 

  • Diaz-Amigo C, Popping B (2012) Gluten and gluten-free: issues and considerations of labeling regulations, detection methods, and assay validation. J AOAC Int 95:337–348

    Article  CAS  Google Scholar 

  • Diaz-Amigo C, Popping B (2013) Accuracy of ELISA detection methods for gluten and reference materials: a realistic assessment. J Agric Food Chem 61:5681–5688. doi:10.1021/jf3046736

    Article  CAS  Google Scholar 

  • Fiedler KL, McGrath SC, Callahan JH, Ross MM (2014) Characterization of grain-specific peptide markers for the detection of gluten by mass spectrometry. J Agric Food Chem 62:5835–5844. doi:10.1021/jf500997j

    Article  CAS  Google Scholar 

  • Green PHR, Fleischauer AT, Bhagat G et al (2003) Risk of malignancy in patients with celiac disease. Am J Med 115:191–195. doi:10.1016/S0002-9343(03)00302-4

    Article  Google Scholar 

  • Guo B, Luan H, Lin S et al (2016) Comparative proteomic analysis of two barley cultivars (Hordeum vulgare L.) with contrasting grain protein content. Front Plant Sci. doi:10.3389/fpls.2016.00542

    Google Scholar 

  • Kanerva PM, Sontag-Strohm TS, Ryöppy PH et al (2006) Analysis of barley contamination in oats using R5 and ω-gliadin antibodies. J Cereal Sci 44:347–352. doi:10.1016/j.jcs.2006.08.005

    Article  CAS  Google Scholar 

  • Kanerva P, Brinck O, Sontag-Strohm T et al (2011) Deamidation of gluten proteins and peptides decreases the antibody affinity in gluten analysis assays. J Cereal Sci 53:335–339. doi:10.1016/j.jcs.2011.02.003

    Article  CAS  Google Scholar 

  • Manfredi A, Mattarozzi M, Giannetto M, Careri M (2015) Multiplex liquid chromatography-tandem mass spectrometry for the detection of wheat, oat, barley and rye prolamins towards the assessment of gluten-free product safety. Anal Chim Acta 895:62–70. doi:10.1016/j.aca.2015.09.008

    Article  CAS  Google Scholar 

  • Marbaix H, Budinger D, Dieu M et al (2016) Identification of proteins and peptide biomarkers for detecting banned processed animal proteins (PAPs) in meat and bone meal by mass spectrometry. J Agric Food Chem 64:2405–2414. doi:10.1021/acs.jafc.6b00064

    Article  CAS  Google Scholar 

  • Sandberg R, Bränden C-I, Ernberg I, Cöster J (2003) Quantifying the species-specificity in genomic signatures, synonymous codon choice, amino acid usage and G+C content. Gene 311:35–42

    Article  CAS  Google Scholar 

  • Sapone A, Lammers KM, Casolaro V et al (2011) Divergence of gut permeability and mucosal immune gene expression in two gluten-associated conditions: celiac disease and gluten sensitivity. BMC Med 9:23. doi:10.1186/1741-7015-9-23

    Article  CAS  Google Scholar 

  • Sealey-Voyksner JA, Khosla C, Voyksner RD, Jorgenson JW (2010) Novel aspects of quantitation of immunogenic wheat gluten peptides by liquid chromatography–mass spectrometry/mass spectrometry. J Chromatogr A 1217:4167–4183. doi:10.1016/j.chroma.2010.01.067

    Article  CAS  Google Scholar 

  • Shahbazi Y, Malekinejad H, Tajik H (2016) Determination of naturally occurring estrogenic hormones in cow’s and river buffalo’s meat by HPLC-FLD method. J Food Drug Anal 24:457–463. doi:10.1016/j.jfda.2016.02.014

    Article  CAS  Google Scholar 

  • Shewry PR, Tatham AS, Kasarda DD (1992) Cereal proteins and coeliac disease. Coeliac Dis Oxf Blackwell Sci Publ 305:348

    Google Scholar 

  • Shewry PR, Halford NG, Belton PS, Tatham AS (2002) The structure and properties of gluten: an elastic protein from wheat grain. Philos Trans R Soc B Biol Sci 357:133–142. doi:10.1098/rstb.2001.1024

    Article  CAS  Google Scholar 

  • Simonato B, Mainente F, Tolin S, Pasini G (2011) Immunochemical and mass spectrometry detection of residual proteins in gluten fined red wine. J Agric Food Chem 59:3101–3110. doi:10.1021/jf104490z

    Article  CAS  Google Scholar 

  • Skylas DJ, Mackintosh JA, Cordwell SJ et al (2000) Proteome approach to the characterisation of protein composition in the developing and mature wheat-grain endosperm. J Cereal Sci 32:169–188. doi:10.1006/jcrs.2000.0321

    Article  CAS  Google Scholar 

  • Snégaroff J, Bouchez-Mahiout I, Pecquet C et al (2006) Study of IgE antigenic relationships in hypersensitivity to hydrolyzed wheat proteins and wheat-dependent exercise-induced anaphylaxis. Int Arch Allergy Immunol 139:201–208. doi:10.1159/000091165

    Article  Google Scholar 

  • Srinivasan B, Focke-Tejkl M, Swoboda I et al (2013) A combined biochemical, biophysical and immunological approach towards the identification of celiac disease-specific wheat antigens. Amino Acids 45:889–900. doi:10.1007/s00726-013-1537-6

    Article  CAS  Google Scholar 

  • Srinivasan B, Focke-Tejkl M, Weber M et al (2015) Usefulness of recombinant γ-gliadin 1 for identifying patients with celiac disease and monitoring adherence to a gluten-free diet. J Allergy Clin Immunol 136:1607–1618.e3. doi:10.1016/j.jaci.2015.04.040

    Article  CAS  Google Scholar 

  • Tanner GJ, Colgrave ML, Blundell MJ et al (2013a) Measuring hordein (gluten) in beer—a comparison of ELISA and mass spectrometry. PLoS One 8:e56452. doi:10.1371/journal.pone.0056452

  • Tanner GJ, Colgrave ML, Blundell MJ et al (2013b) Measuring hordein (gluten) in beer—a comparison of ELISA and mass spectrometry. PLoS One 8:e56452. doi:10.1371/journal.pone.0056452

    Article  CAS  Google Scholar 

  • Tanner GJ, Blundell MJ, Colgrave ML, Howitt CA (2016) Creation of the first ultra-low gluten barley (Hordeum vulgare L.) for coeliac and gluten-intolerant populations. Plant Biotechnol J 14:1139–1150. doi:10.1111/pbi.12482

    Article  CAS  Google Scholar 

  • Tatham A, Gilbert S, Fido R, Shewry P (2000) Extraction, separation, and purification of wheat gluten proteins and related proteins of barley, rye, and oats. In: Marsh M, FRCP MNMM DSc (eds) Celiac disease. Humana Press, pp 55–73

  • Trufelli H, Palma P, Famiglini G, Cappiello A (2011) An overview of matrix effects in liquid chromatography–mass spectrometry. Mass Spectrom Rev 30:491–509. doi:10.1002/mas.20298

    Article  CAS  Google Scholar 

  • U.S FDA (2013) Food labeling: gluten-free labeling of foods. Fed Regist 78:47154–47179

    Google Scholar 

  • U.S. Food and Drug Administration (2013) Guidance for industry-bioanalytical method validation. http://www.fda.gov/downloads/Drugs/Guidances/ucm070107.pdf

  • Wieser H (2007) Chemistry of gluten proteins. Food Microbiol 24:115–119. doi:10.1016/j.fm.2006.07.004

    Article  CAS  Google Scholar 

  • Zuidmeer L, Goldhahn K, Rona RJ et al (2008) The prevalence of plant food allergies: a systematic review. J Allergy Clin Immunol 121:1210–1218.e4. doi:10.1016/j.jaci.2008.02.019

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Food and Drug Administration (MOHW104-FDA-F-315-000721). The authors are grateful to the Food and Drug Administration, Ministry of Health and Welfare, Taiwan, Republic of China, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsu -Yang Lin.

Ethics declarations

Conflict of Interest

Yi-Shun Liao declares that he has no conflict of interest. Je-Hung Kuo declares that he has no conflict of interest. Bo-Lin Chen declares that he has no conflict of interest. Hsiu-Wei Tsuei declares that he has no conflict of interest. Che-Yang Lin declares that he has no conflict of interest. Hsu-Yang Lin declares that he has no conflict of interest. Hwei-Fang Cheng declares that she has no conflict of interest.

Ethical Approval

Human and animal studies were not performed in this study by any authors.

Informed Consent

None.

Electronic supplementary material

ESM 1

(PDF 881 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, YS., Kuo, JH., Chen, BL. et al. Development and Validation of the Detection Method for Wheat and Barley Glutens Using Mass Spectrometry in Processed Foods. Food Anal. Methods 10, 2839–2847 (2017). https://doi.org/10.1007/s12161-017-0827-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-017-0827-0

Keywords

Navigation