Skip to main content

Advertisement

Log in

Powering up and cleaning up: NiS:Cu2S:Nd2S3 thin film as a supercapacitor electrode and photocatalyst

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The current research describes the successful fabrication and characterization of ternary metal sulphide thin film, NiS:Cu2S:Nd2S3, by physical vapour deposition with diethyldithiocarbamate as the sulphur source. Various analytical approaches were used to evaluate the synthetic material’s crystallographic, morphological, and optical properties. The ternary metal sulphide thin films possessed a crystallite size of 33.5 nm, whilst SEM imaging revealed the presence of geometrical form with tiny clustered bodies. Furthermore, XPS examination showed the existence of Nd 4d, Cu 2p, Ni 2p, and S 2p core-level peaks in the ternary metal sulphide thin films. The current study revealed that the synthesized material had a band gap energy of 3.5 eV. The material’s electrochemical properties were evaluated using cyclic voltammetry, which revealed good supercapacitance performance with a specific capacitance of 412 Fg−1. The cycle stability of the nanoparticle thin films was also found to be good, highlighting its potential as an energy storage medium. Furthermore, the photocatalytic activity of the synthesized material was investigated, especially its capacity to breakdown a variety of contaminants such as malachite green dye, fluopyram, and phenol with a highest degradation rate constant 1.6 × 10−2 min−1. These findings provide compelling evidence of the potential of ternary metal sulphide thin films for a wide range of technological applications, including but not limited to energy storage and photocatalysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request to the corresponding author.

References

  1. Ikumapayi OM, Akinlabi ET, Adeoye AOM, Fatoba SO (2021) Microfabrication and nanotechnology in manufacturing system—an overview. Mater Today Proc 44:1154–1162

    Article  Google Scholar 

  2. Gul MM, Ahmad KS (2022) Nanocomposite Zr2S3–BaS–Cr2S3 ternary‐metal chalcogenide: an impressive supercapacitor electrode and environmental remediant of toxic pollutants. Int J Energy Res 46:18697–18710

    Article  CAS  Google Scholar 

  3. Gul MM, Ahmad KS (2022) E-beam-deposited Zr2NiS4–GO alloy thin film, a tenacious photocatalyst and efficient electrode for electrical devices. J Mater Sci 57:7290–7309

    Article  CAS  Google Scholar 

  4. Priyadarshini P, Das S, Naik R (2022) A review on metal-doped chalcogenide films and their effect on various optoelectronic properties for different applications. RSC Adv 12:9599–9620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu L, Hofmann JP (2022) High entropy transition metal chalcogenides as electrocatalysts for renewable energy conversion. Curr Opin Electrochem 34:101010

    Article  CAS  Google Scholar 

  6. Irfan M, Azam S, Dahshan A, El Bakkali I, Nouneh K (2022) First-principles study of opto-electronic and thermoelectric properties of SrCdSnX4 (X = S, Se, Te) alkali metal chalcogenides. Comp Cond Matt 30:e00625

    Google Scholar 

  7. Khan W, Din HU, Azam S, Neffati R (2022) First-principles investigations of metal chalcogenides Tl2Hg3X4 (X = S, Se, Te) for advanced optoelectronic and thermoelectric applications. J Solid State Chem. 312:123199

    Article  CAS  Google Scholar 

  8. Abouelela MM, Kawamura G, Matsuda A (2022) Metal chalcogenide-based photoelectrodes for photoelectrochemical water splitting. J Energy Chem. 73: 189-213

    Article  Google Scholar 

  9. Saparov B (2022) Next generation thin-film solar absorbers based on chalcogenides. Chem Rev 122:10575–10577

    Article  CAS  PubMed  Google Scholar 

  10. Hegde SS, Fernandes BJ, Talapatadur V, Ramesh KP, Ramesh K (2022) Impedance spectroscopy analysis of SnS chalcogenide semiconductors. Mater Today Proc 62:5648–5652

    Article  CAS  Google Scholar 

  11. Tedstone AA, Bin Jumah A, Asuquo E, Garforth AA (2022) Transition metal chalcogenide bifunctional catalysts for chemical recycling by plastic hydrocracking: a single-source precursor approach. Royal Soc Open Sci 9:211353

    Article  CAS  Google Scholar 

  12. Sarker JC, Hogarth G (2021) Dithiocarbamate complexes as single source precursors to nanoscale binary, ternary and quaternary metal sulfides. Chem Rev 121:6057–6123

    Article  CAS  PubMed  Google Scholar 

  13. Hogarth G, Onwudiwe DC (2021) Copper dithiocarbamates: coordination chemistry and applications in materials science, biosciences and beyond. Inorganics 9:70

    Article  CAS  Google Scholar 

  14. Holechek JL, Geli HM, Sawalhah MN, Valdez R (2022) A global assessment: can renewable energy replace fossil fuels by 2050? Sustainability 14:4792

    Article  Google Scholar 

  15. Zhang Y, Khan I, Zafar MW (2022) Assessing environmental quality through natural resources, energy resources, and tax revenues. Environ Sci Pollut Res 29:89029–89044

    Article  Google Scholar 

  16. Rehman A, Ma H, Ozturk I, Radulescu M (2022) Revealing the dynamic effects of fossil fuel energy, nuclear energy, renewable energy, and carbon emissions on Pakistan’s economic growth. Environ Sci Pollut Res 29:48784–48794

    Article  CAS  Google Scholar 

  17. Ali SA, Ahmad T (2022) Chemical strategies in molybdenum based chalcogenides nanostructures for photocatalysis. Int J Hydrogen Energy 47(68):29255–29283

    Article  CAS  Google Scholar 

  18. Gul MM, Ahmad KS (2022) Electron beam deposited (Cu2S–CdS) GO thin film as active electrode for supercapacitor and enhanced photocatalyst for water remediation. Int J Energy Res 46:9371–9388

    Article  CAS  Google Scholar 

  19. Dhilip Kumar R, Nagarani S, Sethuraman V, Andra S, Dhinakaran V (2022) Investigations of conducting polymers, carbon materials, oxide and sulfide materials for supercapacitor applications: a review. Chem Paper 76:3371–3385

    Article  CAS  Google Scholar 

  20. Gul MM, Ahmad KS, Thomas AG, Ibrahim SM (2023) The electrochemical performance of lanthanum indium sulphide photoactive electrode in a simple yet efficacious photoelectrochemical cell. J Phys Chem Solids 179:111378

    Article  CAS  Google Scholar 

  21. Gul MM, Ahmad KS, Thomas AG, Ibrahim SM (2023) Remarkable energy storage and photocatalytic remediation potential of novel graphene oxide loaded bi-metal sulphide Ba4Fe2S6-GO nanocomposite thin film. Opt Mater 138:113682

    Article  CAS  Google Scholar 

  22. Balaji M, Devi SC, Balasubramanian AK, Kumar NS (2019) Preparation and characterization of CuSn, CuZr, SnZr and CuSnZr thin films deposited by SILAR method. Vacuum 161:338–346

    Article  CAS  Google Scholar 

  23. Ivashchenko IA, Kozak VS, Olekseyuk ID, Daszkiewicz M, Halyan VV, Tishchenko PV, Gulay LD (2020) The phase equilibria in the Er2S3–In2S3–Ga2S3 quasi-ternary system at 770​ K and the properties of the intermediate compounds. J Solid State Chem 288:121339

    Article  CAS  Google Scholar 

  24. Ali N, Hussain A, Ahmed R, Shamsuri WW, Fu YQ (2016) Synthesis and characterization of copper antimony tin sulphide thin films for solar cell applications. Appl Surf Sci 390:393–398

    Article  CAS  Google Scholar 

  25. Ji X, Li J, Dong B, Zhang H, Zhang S, Qiao K (2019) Evaluation of fluopyram for southern root-knot nematode management in tomato production in China. Crop Prot 122:84–89

    Article  CAS  Google Scholar 

  26. Avenot HF, Van Den Biggelaar H, Morgan DP, Moral J, Joosten MHAJ, Michailides TJ (2014) Sensitivities of baseline isolates and boscalid-resistant mutants of Alternaria alternata from pistachio to fluopyram, penthiopyrad, and fluxapyroxad. Plant Dis 98:197–205

    Article  CAS  PubMed  Google Scholar 

  27. Schleker ASS, Rist M, Matera C, Damijonaitis A, Collienne U, Matsuoka K, Grundler FM (2022) Mode of action of fluopyram in plant-parasitic nematodes. Sci Rep 12:11954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Priya AS, Geetha D, Karthik K, Rajamoorthy M (2019) Investigations on the enhanced photocatalytic activity of (Ag, La) substituted nickel cobaltite spinels. Solid State Sci 98:105992

    Article  Google Scholar 

  29. Sa-nguanprang S, Phuruangrat A, Karthik K, Thongtem S, Thongtem T (2020) Tartaric acid-assisted precipitation of visible light-driven Ce-doped ZnO nanoparticles used for photodegradation of methylene blue. J Aus Cer Soc 56:1029–1041

    Article  CAS  Google Scholar 

  30. Majid S, Ahmad KS (2019) Analysis of dopant concentration effect on optical and morphological properties of PVD coated Cu-doped Ni3S2 thin films. Optik 187:152–163

    Article  CAS  Google Scholar 

  31. Sharif S, Ahmad KS (2020) Synthesis of palladium diethyldithiocarbamate complexes as precursor for the deposition of un-doped and copper sulfide doped thin films by a facile physical vapour deposition technique. Optik 218:165014

    Article  CAS  Google Scholar 

  32. Anwar J, Ahmad KS, Jaffri SB, Sohail M (2022) Doped antimony chalcogenide semiconductor thin films fabrication by physical vapour deposition: elucidation of optoelectronic and electrochemical features. Can Metall Quart 61:145–154

    Article  CAS  Google Scholar 

  33. Habibi MH, Parhizkar J (2015) Cobalt ferrite nano-composite coated on glass by Doctor Blade method for photo-catalytic degradation of an azo textile dye reactive red 4: XRD, FESEM and DRS investigations. Spectrochim Acta A Mol Biomol Spectrosc 150:879–885

    Article  CAS  PubMed  Google Scholar 

  34. Molla A, Sahu M, Hussain S (2016) Synthesis of tunable band gap semiconductor nickel sulphide nanoparticles: rapid and round the clock degradation of organic dyes. Sci Rep 6:1–11

    Article  Google Scholar 

  35. Torki F, Faghihian H (2017) Photocatalytic activity of NiS, NiO and coupled NiS–NiO for degradation of pharmaceutical pollutant cephalexin under visible light. RSC Adv 7:54651–54661

    Article  CAS  Google Scholar 

  36. Sohrabnezhad S, Pourahmad A, Sadjadi MS, Zanjanchi MA (2008) Growth and characterization of NiS and NiCoS nanoparticles in mordenite zeolite host. Mater Sci Eng C 28:202–205

    Article  CAS  Google Scholar 

  37. Yu C, Mao D, Xia F, Huang X, Li J, Liu W, Fang D (2017) Formation of SnS2/Ni2S3 heterojunction on three-dimensional nickelframework for treating chromium (VI)-containing wastewater. Mater Res Exp 4:115023

    Article  Google Scholar 

  38. Bhardwaj R, Jha R, Bhushan M (2021) Comparative study of electrocatalytic activity of single phase rhombohedral β-NiS nanoparticles in alkaline electrolytes. Mater Sci Semicond Process 130:105827

    Article  CAS  Google Scholar 

  39. Liu ML, Chen IW, Huang FQ, Chen LD (2009) Improved thermoelectric properties of Cu-doped quaternary chalcogenides of Cu2CdSnSe4. Adv Mater 21:3808–3812

    Article  CAS  Google Scholar 

  40. Sumohan Pillai A, Alexander A, Sri Varalakshmi G, Manikantan V, Allben Akash B, Enoch IV (2022) Poly-β-Cyclodextrin-coated neodymium-containing copper sulphide nanoparticles as an effective anticancer drug carrier. J Microencap 39:409–418

    Article  CAS  Google Scholar 

  41. Poornaprakash B, Ramu S, Park SH, Vijayalakshmi RP, Reddy BK (2016) Room temperature ferromagnetism in nd doped ZnS diluted magnetic semiconductor nanoparticles. Mater Lett 164:104–107

    Article  CAS  Google Scholar 

  42. Nikolaev RE, Chernovol AM, Tsygankova AR (2015) Phase relations in the Nd2S3-SnS system and properties of the γ-Nd9. 5Sn1. 8S16 solid solution. Inorg Mater 51:88–92

    Article  CAS  Google Scholar 

  43. Zhuge F, Li X, Gao X, Gan X, Zhou F (2009) Synthesis of stable amorphous Cu2S thin film by successive ion layer adsorption and reaction method. Mater Lett 63:652–654

    Article  CAS  Google Scholar 

  44. Patil M, Sharma D, Dive A, Mahajan S, Sharma R (2018) Synthesis and characterization of Cu2S thin film deposited by chemical bath deposition method. Proc Manuf 20:505–508

    Google Scholar 

  45. Karthikeyan C, Dhilip Kumar R, Anandha Raj J, Karuppuchamy S (2020) One pot and large-scale synthesis of nanostructured metal sulfides: synergistic effect on supercapacitor performance. Energy Environ 31:1367–1384

    Article  CAS  Google Scholar 

  46. Chen L, Hosseini M, Fakhri A, Fazelian N, Nasr SM, Nobakht N (2019) Synthesis and characterization of Cr2S3–Bi2O3 nanocomposites: photocatalytic, quenching, repeatability, and antibacterial performances. J Mater Sci Mater Electron 30:13067–13075

    Article  CAS  Google Scholar 

  47. Ghogare TT, Lokhande VC, Ji T, Patil UM, Lokhande CD (2020) A graphene oxide/samarium sulfide (GO/Sm2S3) composite thin film: preparation and electrochemical study. Surf Interf 19:100507

    Article  CAS  Google Scholar 

  48. Gahtar A, Benramache S, Zaouche C, Boukacham A, Sayah A (2020) Effect of temperature on the properties of nickel sulfide films performed by spray pyrolysis technique. Adv Mater Sci 20:36–51

    Article  CAS  Google Scholar 

  49. Mousavi-Kamazani M, Salavati-Niasari M, Sadeghinia M (2013) Synthesis and characterization of Cu2S nanostructures via cyclic microwave radiation. Superlatt Microstruct 63:248–257

    Article  CAS  Google Scholar 

  50. Savarimuthu I, Susairaj MJAM (2022) CuS nanoparticles trigger sulfite for fast degradation of organic dyes under dark conditions. ACS Omega 7:4140–4149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gahtar A, Benramache S, Ammari A, Boukhachem A, Ziouche A (2022) Effect of molar concentration on the physical properties of NiS thin film prepared by spray pyrolysis method for supercapacitors. Inorg Nano-Metal Chem 52:112–121

    CAS  Google Scholar 

  52. Balayeva OO, Azizov AA, Muradov MB, Maharramov AM, Eyvazova GM, Alosmanov RM, Mamiyev ZQ, Aghamaliyev ZA (2016) β-NiS and Ni3S4 nanostructures: fabrication and characterization. Mater Res Bull 75:155–161

    Article  CAS  Google Scholar 

  53. Akin I, Aslan E, Hatay Patir I (2017) Enhanced hydrogen evolution catalysis at the liquid/liquid interface by NixSy and NixSy/Carbon Nanotube catalysts. Eur J Inorg Chem 2017:3961–3966

    Article  CAS  Google Scholar 

  54. Kassim A, Min HS, Siang LK, Nagalingam S (2011) SEM, EDAX and UV-Visible studies on the properties of Cu2S thin films. Chalc Lett 8:405–410

    CAS  Google Scholar 

  55. Huang H, Zhao Y, Bai Y, Li F, Zhang Y, Chen Y (2020) Conductive metal–organic frameworks with extra metallic sites as an efficient electrocatalyst for the hydrogen evolution reaction. Adv Sci 7:2000012

    Article  CAS  Google Scholar 

  56. Näslund LÅ, Persson PO, Rosén J (2020) X-ray photoelectron spectroscopy of Ti3AlC2, Ti3C2Tz, and TiC provides evidence for the electrostatic interaction between laminated layers in MAX-phase materials. J Phys Chem C 124:27732–27742

    Article  Google Scholar 

  57. Lian C, Liu K, Liu H, Wu J (2017) Impurity effects on charging mechanism and energy storage of nanoporous supercapacitors. J Phys Chem C 121:14066–14072

    Article  CAS  Google Scholar 

  58. Jiang Q, Kurra N, Alhabeb M, Gogotsi Y, Alshareef HN (2018) All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv Ener Mater 8:1703043

    Article  Google Scholar 

  59. Gul MM, Ahmad KS (2019) Bioelectrochemical systems: sustainable bio-energy powerhouses. Biosens Bioelectron 142:111576

    Article  CAS  PubMed  Google Scholar 

  60. Nagaraj G, Chinnaiah K, Kannan K, Gurushankar K (2022) Nano-sized neem plant particles as an electrode for electrochemical storage applications. Ionics 28:3787–3797

    Article  CAS  Google Scholar 

  61. Chinnaiah K, Kannan K, Sivaganesh D, Gurushankar K (2022) Electrochemical performance and charge density distribution analysis of ag/NiO nanocomposite synthesized from Withania somnifera leaf extract. Inorg Chem Commun 141:109580

    Article  CAS  Google Scholar 

  62. Nachimuthu S, Kannan K, Thangavel S, Gurushankar K (2022) Electrochemical and magnetic properties of 3D porous NiS/CuS nanocomposites. Appl Surf Sci Adv 7:100209

    Article  Google Scholar 

  63. Chinnaiah K, Kannan K, Krishnamoorthy R, Gurushankar K (2023) Datura metel L. leaf extract mediated sodium alginate polymer membrane for supercapacitor and food packaging applications. Int J Biol Macromol 242:125112

    Article  CAS  PubMed  Google Scholar 

  64. Chinniah K, Kannan K, Maik V, Potemkin V, Grishina M, Jeyaseelan SJC, Muthuvel A, Gnanasangeetha D, Gurushankar K (2023) Electrochemical performance of plant trace element incorporated silver nanoparticles synthesis from Datura metel L. Ind J Biotechnol 28:94–101

    Article  Google Scholar 

  65. Chinnaiah K, Krishnamoorthi R, Kannan K, Sivaganesh D, Saravanakumar S, Theivasanthi T, Palko N, Grishina M, Maik V, Gurushankar K (2022) Ag nanoparticles synthesized by Datura metel L. Leaf extract and their charge density distribution, electrochemical and biological performance. Chem Phys Lett 807:140083

    Article  CAS  Google Scholar 

  66. Gul MM, Ahmad KS, Thomas AG, Alarifi S (2023) Supercapacitor with highly efficient rare earth metal conjugated transition metal chalcogenide photoactive electrode in: SnO2/Nd2S3: Ni9S8: Co9S8. Mater Sci Eng B 294:116544

    Article  CAS  Google Scholar 

  67. Yang J, Duan X, Qin Q, Zheng W (2013) Solvothermal synthesis of hierarchical flower-like β-NiS with excellent electrochemical performance for supercapacitors. J Mater Chem A 1:7880–7884

    Article  CAS  Google Scholar 

  68. Raj CJ, Kim BC, Cho WJ, Lee WG, Seo Y, Yu KH (2014) Electrochemical capacitor behavior of copper sulfide (CuS) nanoplatelets. J Alloys Comp 586:191–196

    Article  Google Scholar 

  69. Li X, Shen J, Li N, Ye M (2015) Template-free solvothermal synthesis of NiS2 microspheres on graphene sheets for high-performance supercapacitors. Mater Lett 139:81–85

    Article  CAS  Google Scholar 

  70. Vidhya MS, Ravi G, Yuvakkumar R, Kumar P, Velauthapillai D, Saravanakumar B, Babu ES (2020) Cu2S electrochemical energy storage applications. In AIP Conference Proceedings (Vol. 2270, No. 1). AIP Publishing

  71. Kannan K, Radhika D, Gnanasangeetha D, Lakkaboyana SK, Sadasivuni KK, Gurushankar K, Hanafiah MM (2021) Photocatalytic and antimicrobial properties of microwave synthesized mixed metal oxide nanocomposite. Inorg Chem Comm 125:108429

    Article  CAS  Google Scholar 

  72. Kannan K, Radhika D, Nesaraj AS, Sadasivuni KK, Krishna LS (2020) Facile synthesis of NiO-CYSO nanocomposite for photocatalytic and antibacterial applications. Inorg Chem Commun 122:108307

    Article  CAS  Google Scholar 

  73. Borthakur P, Das MR (2018) Hydrothermal assisted decoration of NiS2 and CoS nanoparticles on the reduced graphene oxide nanosheets for sunlight driven photocatalytic degradation of azo dye: effect of background electrolyte and surface charge. J Colloid Interface Sci 516:342–354

    Article  CAS  PubMed  Google Scholar 

  74. Ahmed B, Ojha AK, Kumar S (2017) One-pot synthesis of Ni doped CdS nanosheets for near infrared emission and excellent photocatalytic materials for degradation of MB dye under UV and sunlight irradiation. Spectrochim Acta A Mol Biomol Spectrosc 179:144–154

    Article  CAS  PubMed  Google Scholar 

  75. Li S, Zhang Z, Yan L, Jiang S, Zhu N, Li J, Yu S (2017) Fast synthesis of CuS and Cu9S5 microcrystal using subcritical and supercritical methanol and their application in photocatalytic degradation of dye in water. J Supercrit Fluid 123:11–17

    Article  CAS  Google Scholar 

  76. Subramanyam K, Sreelekha N, Reddy DA, Murali G, Varma KR, Vijayalakshmi RP (2017) Chemical synthesis, structural, optical, magnetic characteristics and enhanced visible light active photocatalysis of Ni doped CuS nanoparticles. Solid State Sci 65:68–78

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Department of Environmental Sciences, Fatima Jinnah Women University, Pakistan for providing the technical and financial facilities needed for completion of this work. The authors also acknowledge the Higher Education Commission of Pakistan and Photon Science Institute, The University of Manchester, UK. The authors highly acknowledge Xuzhao Liu, PhD student, The University of Manchester, UK, for his tremendous help and assistance during the research. We are highly thankful to the Higher Education Commission of Pakistan for providing financial support for this research under NRPU project No. 15782.

Author information

Authors and Affiliations

Authors

Contributions

MMG designed and performed the experiments, analysed results, prepared graphs, and wrote the manuscript. KSA supervised the research, designed the experiments, analysed the results, and helped in paper writing and review. LA helped in analysing results and paper review. AGT supervised the research and helped in manuscript review. SAA helped in analysing results and paper review. YTA helped in analysing results and paper review.

Corresponding author

Correspondence to Khuram Shahzad Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gul, M.M., Ahmad, K.S., Almanqur, L. et al. Powering up and cleaning up: NiS:Cu2S:Nd2S3 thin film as a supercapacitor electrode and photocatalyst. J Appl Electrochem 54, 257–273 (2024). https://doi.org/10.1007/s10800-023-01969-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01969-x

Keywords

Navigation