Skip to main content

Advertisement

Log in

Industrial-scale synthesis and application of covalent organic frameworks in lithium battery technology

  • Review Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Covalent organic frameworks (COFs) have emerged as a promising strategy for developing advanced energy storage materials for lithium batteries. Currently commercialized materials used in lithium batteries, such as graphite and metal oxide-based electrodes, have shortcomings that limit their performance and reliability. For example, graphite-based electrodes have a limited energy density and capacity, while metal oxide-based electrodes suffer from poor cycling stability, low rate capability, and limited capacity retention. Alternative approaches, such as the use of COFs, are needed to develop high-performance energy storage devices that can overcome these challenges. COFs have a well-designed approach that utilizes redox entities, greener and biodegradable materials, and the ability to monitor structure–property relationships. This approach can enhance the electrochemical performance of COFs, improve cycling stability, and increase capacity. The industrialization of COF-based lithium batteries can provide high-performance energy storage devices with higher energy density, longer lifespan, and lower cost. To achieve this, the selection of raw materials based on the type of COF, implementation of scalable synthesis methods, and optimization of battery assembly processes, as well as the development of cost-effective and scalable materials for electrodes, electrolytes, and separators, and the understanding of the electrochemical behavior of COF-based materials are crucial. This contribution aims to give a general overview of the status and potential for the industrialization of COF-based lithium batteries by addressing these issues.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Tong Y, Wang X, Zhang Y, Huang W (2021) Recent advances of covalent organic frameworks in lithium ion batteries. Inorg Chem Front 8:558–571

    Article  CAS  Google Scholar 

  2. Wang L, Chen B, Ma J, Cui G, Chen L (2018) Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem Soc Rev 47:6505–6602

    Article  CAS  PubMed  Google Scholar 

  3. Xu Y, Gao L, Shen L, Liu Q, Zhu Y, Liu Q et al (2020) Ion-transport-rectifying layer enables Li-metal batteries with high energy density. Matter 3:1685–1700

    Article  Google Scholar 

  4. Cui X, Dong H, Chen S, Wu M, Wang Y (2020) Progress and perspective of metal- and covalent-organic frameworks and their derivatives for lithium-ion batteries. Batteries Supercaps 4:72–97

    Article  Google Scholar 

  5. Zhang L, Li X, Yang M, Chen W (2021) High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective. Energy Storage Mater 41:522–545

    Article  Google Scholar 

  6. Aslam MK, Niu Y, Xu M (2021) MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors. Adv Energy Mater 11:2000681

    Article  CAS  Google Scholar 

  7. Tong Z, Huang L, Lei W, Zhang H, Zhang S (2021) Carbon-containing electrospun nanofibers for lithium–sulfur battery: current status and future directions. J Energy Chem 54:254–273

    Article  CAS  Google Scholar 

  8. Sun P, Bai P, Chen Z, Su H, Yang J, Xu K et al (2020) A lithium-organic primary battery. Small 16:1906462

    Article  CAS  Google Scholar 

  9. Wu Y, Zeng R, Nan J, Shu D, Qiu Y, Chou S-L (2017) Quinone electrode materials for rechargeable lithium/sodium ion batteries. Adv Energy Mater 7:1700278

    Article  Google Scholar 

  10. Bayat V, Ghafari A, Asgari F, Radmoghaddam ZA, Yeklangi AG, Akbari S (2023) Covalent organic frameworks for next-generation of lithium-ion batteries. NanoSci Technol 8:1–23

    Google Scholar 

  11. Diercks CS, Yaghi OM (2017) The atom, the molecule, and the covalent organic framework. Science 355:eaal1585

    Article  PubMed  Google Scholar 

  12. Wang J, Zhuang S (2019) Covalent organic frameworks (COFs) for environmental applications. Coord Chem Rev 400:213046

    Article  CAS  Google Scholar 

  13. Zhang W, Chen L, Dai S, Zhao C, Ma C, Wei L et al (2022) Reconstructed covalent organic frameworks. Nature 604:72–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abuzeid HR, El-Mahdy AF, Kuo S-W (2021) Covalent organic frameworks: design principles, synthetic strategies, and diverse applications. Giant 6:100054

    Article  CAS  Google Scholar 

  15. Song Y, Sun Q, Aguila B, Ma S (2019) Opportunities of covalent organic frameworks for advanced applications. Adv Sci 6:1801410

    Article  Google Scholar 

  16. Zhao W, Xia L, Liu X (2018) Covalent organic frameworks (COFs): perspectives of industrialization. CrystEngComm 20:1613–1634

    Article  CAS  Google Scholar 

  17. Haldar S, Schneemann A, Kaskel S (2023) Covalent organic frameworks as model materials for fundamental and mechanistic understanding of organic battery design principles. J Am Chem Soc 145:13494–13513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu D, Xu G, Barnes M, Li Y, Tseng CP, Zhang Z et al (2021) Covalent organic frameworks for batteries. Adv Funct Mater 31:2100505

    Article  CAS  Google Scholar 

  19. Ghafari A, Bayat V, Akbari S, Yeklangi AG (2023) Current and future prospects of Li-ion batteries : a review. NanoSci Technol 8:24–43

    Google Scholar 

  20. Banerjee A, Khossossi N, Luo W, Ahuja R (2022) Promise and reality of organic electrodes from materials design and charge storage perspective. J Mater Chem A 10:15215–15234

    Article  CAS  Google Scholar 

  21. An SY, Schon TB, McAllister BT, Seferos DS (2020) Design strategies for organic carbonyl materials for energy storage: small molecules, oligomers, polymers and supramolecular structures. EcoMat 2:e12055

    Article  CAS  Google Scholar 

  22. Miller-Chou BA, Koenig JL (2003) A review of polymer dissolution. Prog Polym Sci 28:1223–1270

    Article  CAS  Google Scholar 

  23. Chen Y, Wang C (2020) Designing high performance organic batteries. Acc Chem Res 53:2636–2647

    Article  CAS  PubMed  Google Scholar 

  24. Wu M, Zhou Z (2023) Covalent organic frameworks as electrode materials for rechargeable metal-ion batteries. Interdiscip Mater 2:231–259

    Article  Google Scholar 

  25. Wang Z, Hu J, Lu Z (2023) Covalent organic frameworks as emerging battery materials. Batteries Supercaps 6:e202200545

    Article  CAS  Google Scholar 

  26. Yang L, Huang N (2022) Covalent organic frameworks for applications in lithium batteries. J Polym Sci 60:2225–2238

    Article  CAS  Google Scholar 

  27. Yao S, Yang Y, Liang Z, Chen J, Ding J, Li F et al (2023) A dual−functional cationic covalent organic frameworks modified separator for high energy lithium metal batteries. Adv Funct Mater 33:2212466

    Article  CAS  Google Scholar 

  28. Zou J, Fan K, Chen Y, Hu W, Wang C (2022) Perspectives of ionic covalent organic frameworks for rechargeable batteries. Coord Chem Rev 458:214431

    Article  CAS  Google Scholar 

  29. Liu Y, Zhang R, Wang J, Wang Y (2021) Current and future lithium-ion battery manufacturing. Science 24:102332

    CAS  Google Scholar 

  30. Wang D-G, Qiu T, Guo W, Liang Z, Tabassum H, Xia D et al (2021) Covalent organic framework-based materials for energy applications. Energy Environ Sci 14:688–728

    Article  CAS  Google Scholar 

  31. Gao H, Zhu Q, Neale AR, Bahri M, Wang X, Yang H et al (2021) Integrated covalent organic framework/carbon nanotube composite as li-ion positive electrode with ultra-high rate performance. Adv Energy Mater 11:2101880

    Article  CAS  Google Scholar 

  32. Gao Z, Liu Q, Zhao G, Sun Y, Guo H (2022) Covalent organic frameworks for solid-state electrolytes of lithium metal batteries. J Mater Chem A 10:7497–7516

    Article  CAS  Google Scholar 

  33. Qiao Y, Zeng X, Wang H, Long J, Tian Y, Lan J et al (2023) Application and research progress of covalent organic frameworks for solid-state electrolytes in lithium metal batteries. Materials 16:2240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang W-H, Li X-M, Yang X-F, Zhang X-X, Wang H-H, Wang H (2021) The recent progress and perspectives on metal-and covalent-organic framework based solid-state electrolytes for lithium-ion batteries. Mater Chem Front 5:3593–3613

    Article  CAS  Google Scholar 

  35. Chen J, Wu J, Wang X, Zhou A, Yang Z (2021) Research progress and application prospect of solid-state electrolytes in commercial lithium-ion power batteries. Energy Storage Mater 35:70–87

    Article  Google Scholar 

  36. Wang Z, Jin W, Huang X, Lu G, Li Y (2020) Covalent organic frameworks as electrode materials for metal ion batteries: a current review. Chem Rec 20:1198–1219

    Article  CAS  PubMed  Google Scholar 

  37. Zhu Y, Jiang S, Jing X, Feng X (2021) Electrically conductive 2D covalent organic frameworks. Trends Chem 4:128–141

    Article  Google Scholar 

  38. Yuan B, Liu D, Yin H, Zhang D (2021) Materials for electroanalysis based on advanced frameworks. Front Chem 9:638338

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen X, Li Y, Wang L, Xu Y, Nie A, Li Q et al (2019) High-lithium-affinity chemically exfoliated 2D covalent organic frameworks. Adv Mater 31:1901640

    Article  Google Scholar 

  40. Zhao H, Luo D, Xu H, He W, Ding B, Dou H et al (2022) A novel covalent organic framework with high-density imine groups for lithium storage as anode material in lithium-ion batteries. J Mater Sci 57:9980–9991

    Article  CAS  Google Scholar 

  41. Chen M, Li H, Liu C, Liu J, Feng Y, Wee AGH et al (2021) Porphyrin-and porphyrinoid-based covalent organic frameworks (COFs): from design, synthesis to applications. Coord Chem Rev 435:213778

    Article  CAS  Google Scholar 

  42. Xiao J, Chen J, Liu J, Ihara H, Qiu H (2022) Synthesis strategies of covalent organic frameworks: an overview from nonconventional heating methods and reaction media. Green Energy Environ. https://doi.org/10.1016/j.gee.2022.05.003

    Article  Google Scholar 

  43. Min Y, Guo L, Wei G, Xian D, Zhang B, Wang L (2022) Enhancing the safety and cyclic performance of lithium-ion batteries using heat resistant and wettable separator based on covalent organic framework and polybenzimidazole. Chem Eng J 443:136480

    Article  CAS  Google Scholar 

  44. Zhao H, Sheng L, Wang L, Xu H, He X (2020) The opportunity of metal organic frameworks and covalent organic frameworks in lithium (ion) batteries and fuel cells. Energy Storage Mater 33:360–381

    Article  Google Scholar 

  45. Waller PJ, Gándara F, Yaghi OM (2015) Chemistry of covalent organic frameworks. Acc Chem Res 48:3053–3063

    Article  CAS  PubMed  Google Scholar 

  46. Tong M, Yang Q, Zhong C (2015) Computational screening of covalent organic frameworks for CH4/H2, CO2/H2 and CO2/CH4 separations. Microporous Mesoporous Mater 210:142–148

    Article  CAS  Google Scholar 

  47. Ding S-Y, Wang W (2013) Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev 42:548–568

    Article  CAS  PubMed  Google Scholar 

  48. Rabbani MG, Sekizkardes AK, Kahveci Z, Reich TE, Ding R, El-Kaderi HM (2013) A 2D mesoporous imine-linked covalent organic framework for high pressure gas storage applications. Chemistry 19:3324–3328

    Article  CAS  PubMed  Google Scholar 

  49. Ashourirad B, Sekizkardes AK, Altarawneh S, El-Kaderi HM (2015) Exceptional gas adsorption properties by nitrogen-doped porous carbons derived from benzimidazole-linked polymers. Chem Mater 27:1349–1358

    Article  CAS  Google Scholar 

  50. Gao Q, Bai L, Zhang X, Wang P, Li P, Zeng Y et al (2015) Synthesis of microporous nitrogen-rich covalent-organic framework and its application in CO2 capture. Chin J Chem 33:90–94

    Article  CAS  Google Scholar 

  51. Thote J, Aiyappa HB, Deshpande A, Diaz Diaz D, Kurungot S, Banerjee R (2014) A covalent organic framework–cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production. Chemistry 20:15961–15965

    Article  CAS  PubMed  Google Scholar 

  52. Ding S-Y, Gao J, Wang Q, Zhang Y, Song W-G, Su C-Y et al (2011) Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J Am Chem Soc 133:19816–19822

    Article  CAS  PubMed  Google Scholar 

  53. Pachfule P, Kandambeth S, Díaz DD, Banerjee R (2014) Highly stable covalent organic framework–Au nanoparticles hybrids for enhanced activity for nitrophenol reduction. Chem Commun 50:3169–3172

    Article  CAS  Google Scholar 

  54. Pachfule P, Panda MK, Kandambeth S, Shivaprasad S, Díaz DD, Banerjee R (2014) Multifunctional and robust covalent organic framework–nanoparticle hybrids. J Mater Chem A 2:7944–7952

    Article  CAS  Google Scholar 

  55. Kaleeswaran D, Vishnoi P, Murugavel R (2015) [3+ 3] Imine and β-ketoenamine tethered fluorescent covalent-organic frameworks for CO 2 uptake and nitroaromatic sensing. J Mater Chem C 3:7159–7171

    Article  CAS  Google Scholar 

  56. Wan S, Gándara F, Asano A, Furukawa H, Saeki A, Dey SK et al (2011) Covalent organic frameworks with high charge carrier mobility. Chem Mater 23:4094–4097

    Article  CAS  Google Scholar 

  57. Stegbauer L, Schwinghammer K, Lotsch BV (2014) A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem Sci 5:2789–2793

    Article  CAS  Google Scholar 

  58. Bhanja P, Bhunia K, Das SK, Pradhan D, Kimura R, Hijikata Y et al (2017) A new triazine-based covalent organic framework for high-performance capacitive energy storage. Chemsuschem 10:921–929

    Article  CAS  PubMed  Google Scholar 

  59. Vyas VS, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C et al (2015) A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nat Commun 6:8508

    Article  CAS  PubMed  Google Scholar 

  60. Cote AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science 310:1166–1170

    Article  CAS  PubMed  Google Scholar 

  61. Deng N, Liu Y, Yu W, Kang J, Li Q, Gao H et al (2022) Rational design and preparation of covalent organic frameworks and their functional mechanism analysis for lithium-ion and lithium sulfur/selenium cells. Energy Storage Mater 46:29–67

    Article  Google Scholar 

  62. Haldar S, Bhauriyal P, Ramuglia AR, Khan AH, De Kock S, Hazra A et al (2023) Sulfide-bridged covalent quinoxaline frameworks for lithium–organosulfide batteries. Adv Mater 35:2210151

    Article  CAS  Google Scholar 

  63. You J, Zhao Y, Wang L, Bao W (2021) Recent developments in the photocatalytic applications of covalent organic frameworks: a review. J Clean Product 291:125822

    Article  CAS  Google Scholar 

  64. Ni X, Liu J, Ji H, Chen L, Qian T, Yan C (2021) Ordered lithium ion channels of covalent organic frameworks with lithiophilic groups enable uniform and efficient Li plating/stripping. J Energy Chem 61:135–140

    Article  CAS  Google Scholar 

  65. Wang C, Tang J, Chen Z, Jin Y, Liu J, Xu H et al (2022) Ion-selective covalent organic frameworks boosting electrochemical energy storage and conversion: a review. Energy Storage Mater 55:498–516

    Article  Google Scholar 

  66. Tan STM, Quill TJ, Moser M, LeCroy G, Chen X, Wu Y et al (2021) Redox-active polymers designed for the circular economy of energy storage devices. ACS Energy Lett 6:3450–3457

    Article  CAS  Google Scholar 

  67. Kim J, Kim JH, Ariga K (2017) Redox-active polymers for energy storage nanoarchitectonics. Joule 1:739–768

    Article  CAS  Google Scholar 

  68. DeBlase CR, Silberstein KE, Truong T-T, Abruña HD, Dichtel WR (2013) β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J Am Chem Soc 135:16821–16824

    Article  CAS  PubMed  Google Scholar 

  69. Ma L, Wang S, Feng X, Wang B (2016) Recent advances of covalent organic frameworks in electronic and optical applications. Chin Chem Lett 27:1383–1394

    Article  CAS  Google Scholar 

  70. Fan Y, Niu Z, Zhang F, Zhang R, Zhao Y, Lu G (2019) Suppressing the shuttle effect in lithium–sulfur batteries by a UiO-66-modified polypropylene separator. ACS Omega 4:10328–10335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang S, Liang Y, Dai T, Liu Y, Sui Z, Tian X et al (2021) Cationic covalent-organic framework for sulfur storage with high-performance in lithium-sulfur batteries. J Colloid Interface Sci 591:264–272

    Article  CAS  PubMed  Google Scholar 

  72. Chen J-M, Duan H, Kong Y, Tian B, Ning G-H, Li D (2022) Improving lithium–sulfur batteries’ performance via inverse vulcanization of vinylene-linked covalent organic frameworks. Energy Fuels 36:5998–6004

    Article  CAS  Google Scholar 

  73. Liao H, Ding H, Li B, Ai X, Wang C (2014) Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium–sulfur batteries. J Mater Chem A 2:8854–8858

    Article  CAS  Google Scholar 

  74. Yang X, Dong B, Zhang H, Ge R, Gao Y, Zhang H (2015) Sulfur impregnated in a mesoporous covalent organic framework for high performance lithium–sulfur batteries. RSC Adv 5:86137–86143

    Article  CAS  Google Scholar 

  75. Talapaneni SN, Hwang TH, Je SH, Buyukcakir O, Choi JW, Coskun A (2016) Elemental-sulfur-mediated facile synthesis of a covalent triazine framework for high-performance lithium–sulfur batteries. Angew Chem Int Ed 55:3106–3111

    Article  CAS  Google Scholar 

  76. Du Y, Yang H, Whiteley JM, Wan S, Jin Y, Lee SH et al (2016) Ionic covalent organic frameworks with spiroborate linkage. Angew Chem Int Ed 55:1737–1741

    Article  CAS  Google Scholar 

  77. An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DL (2016) The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105:52–76

    Article  CAS  Google Scholar 

  78. Vorauer T, Schöggl J, Sanadhya S, Poluektov M, Widanage WD, Figiel L et al (2023) Impact of solid-electrolyte interphase reformation on capacity loss in silicon-based lithium-ion batteries. Commun Mater 4:44

    Article  CAS  Google Scholar 

  79. Michan AL, Divitini G, Pell AJ, Leskes M, Ducati C, Grey CP (2016) Solid electrolyte interphase growth and capacity loss in silicon electrodes. J Am Chem Soc 138:7918–7931

    Article  CAS  PubMed  Google Scholar 

  80. Ai Q, Fang Q, Liang J, Xu X, Zhai T, Gao G et al (2020) Lithium-conducting covalent-organic-frameworks as artificial solid-electrolyte-interphase on silicon anode for high performance lithium ion batteries. Nano Energy 72:104657

    Article  CAS  Google Scholar 

  81. Chen D, Huang S, Zhong L, Wang S, Xiao M, Han D et al (2020) In situ preparation of thin and rigid COF film on Li anode as artificial solid electrolyte interphase layer resisting Li dendrite puncture. Adv Funct Mater 30:1907717

    Article  CAS  Google Scholar 

  82. Luo Z, Liu L, Ning J, Lei K, Lu Y, Li F et al (2018) A microporous covalent–organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew Chem Int Ed 57:9443–9446

    Article  CAS  Google Scholar 

  83. Wu M, Zhao Y, Sun B, Sun Z, Li C, Han Y et al (2020) A 2D covalent organic framework as a high-performance cathode material for lithium-ion batteries. Nano Energy 70:104498

    Article  CAS  Google Scholar 

  84. Yang X, Hu Y, Dunlap N, Wang X, Huang S, Su Z et al (2020) A truxenone-based covalent organic framework as an all-solid-state lithium-ion battery cathode with high capacity. Angew Chem Int Ed 59:20385–20389

    Article  CAS  Google Scholar 

  85. Xu Q, Zhang K, Qian J, Guo Y, Song X, Pan H et al (2019) Boosting lithium–sulfur battery performance by integrating a redox-active covalent organic framework in the separator. ACS Appl Energy Mater 2:5793–5798

    Article  CAS  Google Scholar 

  86. Wang J, Si L, Wei Q, Hong X, Cai S, Cai Y (2017) Covalent organic frameworks as the coating layer of ceramic separator for high-efficiency lithium–sulfur batteries. ACS Appl Nano Mater 1:132–138

    Article  Google Scholar 

  87. Li X, Zhang K, Li Z, Yan Y, Yuan Y, Ma L et al (2023) Rational design of covalent organic frameworks as gas diffusion layers for multi-atmosphere lithium-air batteries. Angew Chem Int Ed 62:e202217869

    Article  CAS  Google Scholar 

  88. Wang X-X, Chi X-W, Li M-L, Guan D-H, Miao C-L, Xu J-J (2023) An integrated solid-state lithium-oxygen battery with highly stable anionic covalent organic frameworks electrolyte. Chem 9:394–410

    Article  Google Scholar 

  89. Hu Y, Wayment LJ, Haslam C, Yang X, Lee S, Jin Y et al (2021) Covalent organic framework based lithium-ion battery: fundamental, design and characterization. EnergyChem 3:100048

    Article  CAS  Google Scholar 

  90. Lu Y, Chen J (2020) Prospects of organic electrode materials for practical lithium batteries. Nat Rev Chem 4:127–142

    Article  CAS  PubMed  Google Scholar 

  91. Yao CJ, Wu Z, Xie J, Yu F, Guo W, Xu ZJ et al (2020) Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery. Chemsuschem 13:2457–2463

    Article  CAS  PubMed  Google Scholar 

  92. Wang Z, Li Y, Liu P, Qi Q, Zhang F, Lu G et al (2019) Few layer covalent organic frameworks with graphene sheets as cathode materials for lithium-ion batteries. Nanoscale 11:5330–5335

    Article  CAS  PubMed  Google Scholar 

  93. Li Z, Ji W, Wang T-X, Ding X, Han B-H, Feng W (2022) Maximized lithiophilic carbonyl units in covalent organic frameworks as effective Li ion regulators for lithium metal batteries. Chem Eng J 437:135293

    Article  CAS  Google Scholar 

  94. Xu F, Jin S, Zhong H, Wu D, Yang X, Chen X et al (2015) Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Sci Rep 5:8225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bhosale ME, Chae S, Kim JM, Choi J-Y (2018) Organic small molecules and polymers as an electrode material for rechargeable lithium ion batteries. J Mater Chem A 6:19885–19911

    Article  CAS  Google Scholar 

  96. Wang S, Wang Q, Shao P, Han Y, Gao X, Ma L et al (2017) Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J Am Chem Soc 139:4258–4261

    Article  CAS  PubMed  Google Scholar 

  97. Wang G, Chandrasekhar N, Biswal BP, Becker D, Paasch S, Brunner E et al (2019) A crystalline, 2D polyarylimide cathode for ultrastable and ultrafast Li storage. Adv Mater 31:1901478

    Article  Google Scholar 

  98. Dong C, Gao W, Jin B, Jiang Q (2018) Advances in cathode materials for high-performance lithium-sulfur batteries. IScience 6:151–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang J, Qin W, Zhu X, Teng Y (2020) Covalent organic frameworks (COF)/CNT nanocomposite for high performance and wide operating temperature lithium–sulfur batteries. Energy 199:117372

    Article  CAS  Google Scholar 

  100. Gu S, Hao R, Chen J, Chen X, Liu K, Hussain I et al (2022) A star-shaped polyimide covalent organic framework for high-voltage lithium-ion batteries. Mater Chem Front 6:2545–2550

    Article  CAS  Google Scholar 

  101. Meng Y, Lin G, Ding H, Liao H, Wang C (2018) Impregnation of sulfur into a 2D pyrene-based covalent organic framework for high-rate lithium–sulfur batteries. J Mater Chem A 6:17186–17191

    Article  CAS  Google Scholar 

  102. Wu M, Zhao Y, Zhao R, Zhu J, Liu J, Zhang Y et al (2021) Chemical design for both molecular and morphology optimization toward high-performance lithium-ion batteries cathode material based on covalent organic framework. Adv Funct Mater 32:2107703

    Article  Google Scholar 

  103. Yang X, Gong L, Liu X, Zhang P, Li B, Qi D et al (2022) Mesoporous polyimide-linked covalent organic framework with multiple redox-active sites for high-performance cathodic Li storage. Angew Chem Int Ed Engl 61:e202207043

    Article  CAS  PubMed  Google Scholar 

  104. Wang D-G, Li N, Hu Y, Wan S, Song M, Yu G et al (2018) Highly fluoro-substituted covalent organic framework and its application in lithium–sulfur batteries. ACS Appl Mater Interfaces 10:42233–42240

    Article  CAS  PubMed  Google Scholar 

  105. Gong L, Yang X, Gao Y, Yang G, Yu Z, Fu X et al (2022) Two-dimensional covalent organic frameworks with p- and bipolar-type redox-active centers for organic high-performance Li-ion battery cathodes. J Mater Chem A 10:16595–16601

    Article  CAS  Google Scholar 

  106. Wang D-G, Wang Y, Song M, Kuang G-C, Han K (2019) Chemical anchoring of SeS 2 on a fluoro-substituted covalent organic framework as a high-performance cathode material. Chem Commun 55:13247–13250

    Article  CAS  Google Scholar 

  107. Liu X, Jin Y, Wang H, Yang X, Zhang P, Wang K et al (2022) In situ growth of covalent organic framework nanosheets on graphene as the cathode for long-life high-capacity lithium-ion batteries. Adv Mater 34:e2203605

    Article  PubMed  Google Scholar 

  108. Meng Z, Zhang Y, Dong M, Zhang Y, Cui F, Loh T-P et al (2021) Readily useable bulk phenoxazine-based covalent organic framework cathode materials with superior kinetics and high redox potentials. J Mater Chem A 9:10661–10665

    Article  CAS  Google Scholar 

  109. Liu XF, Chen H, Wang R, Zang SQ, Mak TCW (2020) Cationic covalent-organic framework as efficient redox motor for high-performance lithium–sulfur batteries. Small 16:2002932

    Article  CAS  Google Scholar 

  110. Vitaku E, Gannett CN, Carpenter KL, Shen L, Abruna HD, Dichtel WR (2020) Phenazine-based covalent organic framework cathode materials with high energy and power densities. J Am Chem Soc 142:16–20

    Article  CAS  PubMed  Google Scholar 

  111. Xu F, Yang S, Chen X, Liu Q, Li H, Wang H et al (2019) Energy-storage covalent organic frameworks: improving performance via engineering polysulfide chains on walls. Chem Sci 10:6001–6006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jia C, Duan A, Liu C, Wang WZ, Gan SX, Qi QY et al (2023) One‐dimensional covalent organic framework as high‐performance cathode materials for lithium‐ion batteries. Small 2300518

  113. Qiu T, Tang W, Han X, Li Y, Chen Z, Yao R et al (2023) Fluorine/sulfur-comodulated covalent organic frameworks cathode for high-performance lithium ion batteries. Chem Eng J 466:143149

    Article  CAS  Google Scholar 

  114. Ge Y, Li J, Meng Y, Xiao D (2023) Tuning the structure characteristic of the flexible covalent organic framework (COF) meets a high performance for lithium-sulfur batteries. Nano Energy 109:108297

    Article  CAS  Google Scholar 

  115. Wang H, Jiang J, Wan T, Luo Y, Liu G, Li J (2023) A COF-coated ordered porous framework as multifunctional polysulfide barrier towards high-performance lithium-sulfur batteries. J Colloid Interface Sci 638:542–551

    Article  CAS  PubMed  Google Scholar 

  116. Bai L, Gao Q, Zhao Y (2016) Two fully conjugated covalent organic frameworks as anode materials for lithium ion batteries. J Mater Chem A 4:14106–14110

    Article  CAS  Google Scholar 

  117. Zhao G, Zhang Y, Gao Z, Li H, Liu S, Cai S et al (2020) Dual active site of the azo and carbonyl-modified covalent organic framework for high-performance Li storage. ACS Energy Lett 5:1022–1031

    Article  CAS  Google Scholar 

  118. Lei Z, Yang Q, Xu Y, Guo S, Sun W, Liu H et al (2018) Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nat Commun 9:576

    Article  PubMed  PubMed Central  Google Scholar 

  119. Haldar S, Roy K, Kushwaha R, Ogale S, Vaidhyanathan R (2019) Chemical exfoliation as a controlled route to enhance the anodic performance of COF in LIB. Adv Energy Mater 9:1902428

    Article  CAS  Google Scholar 

  120. Wang Z, Pan F, Zhao Q, Lv M, Zhang B (2022) The application of covalent organic frameworks in Lithium-Sulfur batteries: a mini review for current research progress. Front Chem 10:1055649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pavlovskii AA, Pushnitsa K, Kosenko A, Novikov P, Popovich AA (2023) Organic anode materials for lithium-ion batteries: recent progress and challenges. Materials 16:177

    Article  CAS  Google Scholar 

  122. Chen H, Zhang Y, Xu C, Cao M, Dou H, Zhang X (2019) Two π-conjugated covalent organic frameworks with long-term cyclability at high current density for lithium ion battery. Chemistry 25:15472–15476

    Article  CAS  PubMed  Google Scholar 

  123. Tong Y, Sun Z, Wang J, Huang W, Zhang Q (2022) Covalent organic framework containing dual redox centers as an efficient anode in Li-ion batteries. SmartMat 3:685–694

    Article  CAS  Google Scholar 

  124. Wang L, Zhao J, Chen J, Jiang T, Zhang Q, Zhong S et al (2023) Phenediamine bridging phthalocyanine-based covalent organic framework polymers used as anode materials for lithium-ion batteries. Phys Chem Chem Phys 25:8050–8063

    Article  CAS  PubMed  Google Scholar 

  125. Wang W, Yang Z, Zhang Y, Wang A, Zhang Y, Chen L et al (2022) Highly stable lithium metal anode enabled by lithiophilic and spatial-confined spherical-covalent organic framework. Energy Storage Mater 46:374–383

    Article  Google Scholar 

  126. Wu M, Zhao Y, Zhang H, Zhu J, Ma Y, Li C et al (2021) A 2D covalent organic framework with ultra-large interlayer distance as high-rate anode material for lithium-ion batteries. Nano Res 15:9779–9784

    Article  Google Scholar 

  127. Feng S, Xu H, Zhang C, Chen Y, Zeng J, Jiang D et al (2017) Bicarbazole-based redox-active covalent organic frameworks for ultrahigh-performance energy storage. Chem Commun 53:11334–11337

    Article  CAS  Google Scholar 

  128. Yang H, Wang B, Li Y, Du H, Zhao J, Xie Y (2023) Nano SnO2 loaded on N-doped carbon nanorods derived from metal-complex covalent organic frameworks for anode in lithium ion batteries. J Alloys Compd 945:169302

    Article  CAS  Google Scholar 

  129. Zhao J, Zhou M, Chen J, Tao L, Zhang Q, Li Z et al (2021) Phthalocyanine-based covalent organic frameworks as novel anode materials for high-performance lithium-ion/sodium-ion batteries. Chem Eng J 425:131630

    Article  CAS  Google Scholar 

  130. Yang X, Lin C, Han D, Li G, Huang C, Liu J et al (2022) In situ construction of redox-active covalent organic frameworks/carbon nanotube composites as anodes for lithium-ion batteries. J Mater Chem A 10:3989–3995

    Article  CAS  Google Scholar 

  131. Zhang Y, Wu Y, An Y, Wei C, Tan L, Xi B et al (2022) Ultrastable and high-rate 2D siloxene anode enabled by covalent organic framework engineering for advanced lithium-ion batteries. Small Methods 6:e2200306

    Article  PubMed  Google Scholar 

  132. Zhao G, Sun Y, Yang Y, Zhang C, An Q, Guo H (2022) Molecular engineering regulation redox-dual-active-center covalent organic frameworks-based anode for high-performance Li storage. EcoMat. https://doi.org/10.1002/eom2.12221

    Article  Google Scholar 

  133. Chen D, Liu P, Zhong L, Wang S, Xiao M, Han D et al (2021) Covalent organic frameworks with low surface work function enabled stable lithium anode. Small 17:e2101496

    Article  PubMed  Google Scholar 

  134. Cao Y, Wang M, Wang H, Han C, Pan F, Sun J (2022) Covalent organic framework for rechargeable batteries: mechanisms and properties of ionic conduction. Adv Energy Mater 12:2200057

    Article  CAS  Google Scholar 

  135. Huang W-H, Li X-M, Yang X-F, Zhang X-X, Wang H-H, Wang H (2021) The recent progress and perspectives on metal- and covalent-organic framework based solid-state electrolytes for lithium-ion batteries. Mater Chem Front 5:3593–3613

    Article  CAS  Google Scholar 

  136. Li X, Hou Q, Huang W, Xu H-S, Wang X, Yu W et al (2020) Solution-processable covalent organic framework electrolytes for all-solid-state Li–organic batteries. ACS Energy Lett 5:3498–3506

    Article  CAS  Google Scholar 

  137. Hu Y, Dunlap N, Wan S, Lu S, Huang S, Sellinger I et al (2019) Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity. J Am Chem Soc 141:7518–7525

    Article  CAS  PubMed  Google Scholar 

  138. Chen H, Tu H, Hu C, Liu Y, Dong D, Sun Y et al (2018) Cationic covalent organic framework nanosheets for fast Li-ion conduction. J Am Chem Soc 140:896–899

    Article  CAS  PubMed  Google Scholar 

  139. Zhang G, Hong Y-L, Nishiyama Y, Bai S, Kitagawa S, Horike S (2018) Accumulation of glassy poly (ethylene oxide) anchored in a covalent organic framework as a solid-state Li+ electrolyte. J Am Chem Soc 141:1227–1234

    Article  Google Scholar 

  140. Zhang Y, Duan J, Ma D, Li P, Li S, Li H et al (2017) Three-dimensional anionic cyclodextrin-based covalent organic frameworks. Angew Chem Int Ed 56:16313–16317

    Article  CAS  Google Scholar 

  141. Ashraf S, Zuo Y, Li S, Liu C, Wang H, Feng X et al (2019) Crystalline anionic germanate covalent organic framework for high CO2 selectivity and fast Li ion conduction. Chemistry 25:13479–13483

    Article  CAS  PubMed  Google Scholar 

  142. Jeong K, Park S, Jung GY, Kim SH, Lee Y-H, Kwak SK et al (2019) Solvent-free, single lithium-ion conducting covalent organic frameworks. J Am Chem Soc 141:5880–5885

    Article  CAS  PubMed  Google Scholar 

  143. Zhao G, Xu L, Jiang J, Mei Z, An Q, Lv P et al (2022) COFs-based electrolyte accelerates the Na+ diffusion and restrains dendrite growth in quasi-solid-state organic batteries. Nano Energy 92:106756

    Article  CAS  Google Scholar 

  144. Zhao X, Pachfule P, Thomas A (2021) Covalent organic frameworks (COFs) for electrochemical applications. Chem Soc Rev 50:6871–6913

    Article  CAS  PubMed  Google Scholar 

  145. Guo Z, Zhang Y, Dong Y, Li J, Li S, Shao P et al (2019) Fast ion transport pathway provided by polyethylene glycol confined in covalent organic frameworks. J Am Chem Soc 141:1923–1927

    Article  CAS  PubMed  Google Scholar 

  146. Kong L, Liu M, Huang H, Xu Y, Bu XH (2022) Metal/covalent-organic framework based cathodes for metal-ion batteries. Adv Energy Mater 12:2100172

    Article  CAS  Google Scholar 

  147. Dong D, Zhang H, Zhou B, Sun Y, Zhang H, Cao M et al (2019) Porous covalent organic frameworks for high transference number polymer-based electrolytes. Chem Commun 55:1458–1461

    Article  CAS  Google Scholar 

  148. Wang Y, Zhang K, Jiang X, Liu Z, Bian S, Pan Y et al (2021) Branched poly (ethylene glycol)-functionalized covalent organic frameworks as solid electrolytes. ACS Appl Energy Mater 4:11720–11725

    Article  CAS  Google Scholar 

  149. Vazquez-Molina DA, Mohammad-Pour GS, Lee C, Logan MW, Duan X, Harper JK et al (2016) Mechanically shaped two-dimensional covalent organic frameworks reveal crystallographic alignment and fast Li-ion conductivity. J Am Chem Soc 138:9767–9770

    Article  CAS  PubMed  Google Scholar 

  150. Xu Q, Tao S, Jiang Q, Jiang D (2020) Designing covalent organic frameworks with a tailored ionic interface for ion transport across one-dimensional channels. Angew Chem Int Ed Engl 59:4557–4563

    Article  CAS  PubMed  Google Scholar 

  151. Niu C, Luo W, Dai C, Yu C, Xu Y (2021) High-voltage-tolerant covalent organic framework electrolyte with holistically oriented channels for solid-state lithium metal batteries with nickel-rich cathodes. Angew Chem Int Ed Engl 60:24915–24923

    Article  CAS  PubMed  Google Scholar 

  152. Li Z, Liu Z-W, Mu Z-J, Cao C, Li Z, Wang T-X et al (2020) Cationic covalent organic framework based all-solid-state electrolytes. Mater Chem Front 4:1164–1173

    Article  CAS  Google Scholar 

  153. Li J, Zhang F-Q, Li F, Wu Z, Ma C, Xu Q et al (2020) A pre-synthetic strategy to construct single ion conductive covalent organic frameworks. Chem Commun 56:2747–2750

    Article  CAS  Google Scholar 

  154. Wang Z, Zhang Y, Zhang P, Yan D, Liu J, Chen Y et al (2022) Thermally rearranged covalent organic framework with flame-retardancy as a high safety Li-ion solid electrolyte. eScience 2:311–318

    Article  CAS  Google Scholar 

  155. Xuan Y, Wang Y, He B, Bian S, Liu J, Xu B et al (2022) Covalent organic framework-derived quasi-solid electrolyte for low-temperature lithium-ion battery. Chem Mater 34:9104–9110

    Article  CAS  Google Scholar 

  156. Wen Y, Wang X, Yang Y, Liu M, Tu W, Xu M et al (2019) Covalent organic framework-regulated ionic transportation for high-performance lithium-ion batteries. J Mater Chem A 7:26540–26548

    Article  CAS  Google Scholar 

  157. Cao Y, Wu H, Li G, Liu C, Cao L, Zhang Y et al (2021) Ion selective covalent organic framework enabling enhanced electrochemical performance of lithium–sulfur batteries. Nano Lett 21:2997–3006

    Article  CAS  PubMed  Google Scholar 

  158. Yang Y, Yao S, Liang Z, Wen Y, Liu Z, Wu Y et al (2022) A self-supporting covalent organic framework separator with desolvation effect for high energy density lithium metal batteries. ACS Energy Lett 7:885–896

    Article  CAS  Google Scholar 

  159. Wang Y, Yang X, Li P, Cui F, Wang R, Li X (2022) Covalent organic frameworks for separator modification of lithium–sulfur batteries. Macromol Rapid Commun. https://doi.org/10.1002/marc.202200760

    Article  PubMed  Google Scholar 

  160. Deng X, Li Y, Li L, Qiao S, Lei D, Shi X et al (2021) Sulfonated covalent organic framework modified separators suppress the shuttle effect in lithium-sulfur batteries. Nanotechnology 32:275708

    Article  CAS  Google Scholar 

  161. Yoo J, Cho S-J, Jung GY, Kim SH, Choi K-H, Kim J-H et al (2016) COF-net on CNT-net as a molecularly designed, hierarchical porous chemical trap for polysulfides in lithium–sulfur batteries. Nano Lett 16:3292–3300

    Article  CAS  PubMed  Google Scholar 

  162. Jiang C, Tang M, Zhu S, Zhang J, Wu Y, Chen Y et al (2018) Constructing universal ionic sieves via alignment of two-dimensional covalent organic frameworks (COFs). Angew Chem Int Ed 57:16072–16076

    Article  CAS  Google Scholar 

  163. Li P, Lv H, Li Z, Meng X, Lin Z, Wang R et al (2021) The electrostatic attraction and catalytic effect enabled by ionic–covalent organic nanosheets on MXene for separator modification of lithium–sulfur batteries. Adv Mater 33:2007803

    Article  CAS  Google Scholar 

  164. Huang J-K, Li M, Wan Y, Dey S, Ostwal M, Zhang D et al (2018) Functional two-dimensional coordination polymeric layer as a charge barrier in Li–S batteries. ACS Nano 12:836–843

    Article  CAS  PubMed  Google Scholar 

  165. Si L, Wang J, Li G, Hong X, Wei Q, Yang Y et al (2019) High energy density lithium-selenium batteries enabled by a covalent organic framework-coated separator. Mater Lett 246:144–148

    Article  CAS  Google Scholar 

  166. Wang J, Ke J-P, Wu Z-Y, Zhong X-N, Zheng S-B, Li Y-J et al (2022) Cationic covalent organic framework as separator coating for high-performance lithium selenium disulfide batteries. Coatings 12:931

    Article  CAS  Google Scholar 

  167. Shi J, Su M, Li H, Lai D, Gao F, Lu Q (2022) Two-dimensional imide-based covalent organic frameworks with tailored pore functionality as separators for high-performance Li–S batteries. ACS Appl Mater Interfaces 14:42018–42029

    Article  CAS  PubMed  Google Scholar 

  168. Yao S, Yang Y, Liang Z, Chen J, Ding J, Li F et al (2023) A dual−functional cationic covalent organic frameworks modified separator for high energy lithium metal batteries. Adv Funct Mater. https://doi.org/10.1002/adfm.202212466

    Article  Google Scholar 

  169. Wang C, Li W, Jin Y, Liu J, Wang H, Zhang Q (2023) Functional separator enabled by covalent organic frameworks for high-performance Li metal batteries. Small. https://doi.org/10.1002/smll.202300023

    Article  PubMed  Google Scholar 

  170. Torabi E, Mirzaei M, Bazargan M, Amiri A (2022) A critical review of covalent organic frameworks-based sorbents in extraction methods. Anal Chim Acta 1224:340207

    Article  CAS  PubMed  Google Scholar 

  171. Segura JL, Mancheño MJ, Zamora F (2016) Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chem Soc Rev 45:5635–5671

    Article  CAS  PubMed  Google Scholar 

  172. Cusin L, Peng H, Ciesielski A, Samorì P (2021) Chemical conversion and locking of the imine linkage: enhancing the functionality of covalent organic frameworks. Angew Chem 133:14356–14370

    Article  Google Scholar 

  173. Vitaku E, Gannett CN, Carpenter KL, Shen L, Abruña HD, Dichtel WR (2019) Phenazine-based covalent organic framework cathode materials with high energy and power densities. J Am Chem Soc 142:16–20

    Article  PubMed  Google Scholar 

  174. Tan KT, Ghosh S, Wang Z, Wen F, Rodríguez-San-Miguel D, Feng J et al (2023) Covalent organic frameworks. Nat Rev Methods Primers 3:1

    Article  CAS  Google Scholar 

  175. Chauhan DS, Quraishi M, Nik WW, Srivastava V (2021) Triazines as a potential class of corrosion inhibitors: present scenario, challenges and future perspectives. J Mol Liq 321:114747

    Article  CAS  Google Scholar 

  176. Wang K, Yang LM, Wang X, Guo L, Cheng G, Zhang C et al (2017) Covalent triazine frameworks via a low-temperature polycondensation approach. Angew Chem Int Ed 56:14149–14153

    Article  CAS  Google Scholar 

  177. Kuhn P, Antonietti M, Thomas A (2008) Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem Int Ed 47:3450–3453

    Article  CAS  Google Scholar 

  178. Xue R, Guo H, Wang T, Wang X, Ai J, Yue L et al (2017) Synthesis and characterization of a new covalent organic framework linked by NH linkage. Mater Lett 209:171–174

    Article  CAS  Google Scholar 

  179. Furukawa H, Yaghi OM (2009) Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc 131:8875–8883

    Article  CAS  PubMed  Google Scholar 

  180. Huang G, Zhang F, Du X, Qin Y, Yin D, Wang L (2015) Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 9:1592–1599

    Article  CAS  PubMed  Google Scholar 

  181. Hunt JR, Doonan CJ, LeVangie JD, Côté AP, Yaghi OM (2008) Reticular synthesis of covalent organic borosilicate frameworks. J Am Chem Soc 130:11872–11873

    Article  CAS  PubMed  Google Scholar 

  182. Belenguer AM, Friščić T, Day GM, Sanders JK (2011) Solid-state dynamic combinatorial chemistry: reversibility and thermodynamic product selection in covalent mechanosynthesis. Chem Sci 2:696–700

    Article  CAS  Google Scholar 

  183. Fang Q, Zhuang Z, Gu S, Kaspar RB, Zheng J, Wang J et al (2014) Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat Commun 5:4503

    Article  PubMed  Google Scholar 

  184. Wang T, Xue R, Chen H, Shi P, Lei X, Wei Y et al (2017) Preparation of two new polyimide bond linked porous covalent organic frameworks and their fluorescence sensing application for sensitive and selective determination of Fe 3+. New J Chem 41:14272–14278

    Article  CAS  Google Scholar 

  185. Li Y, Chen W, Xing G, Jiang D, Chen L (2020) New synthetic strategies toward covalent organic frameworks. Chem Soc Rev 49:2852–2868

    Article  CAS  PubMed  Google Scholar 

  186. Liang W, Babarao R, D’Alessandro DM (2013) Microwave-assisted solvothermal synthesis and optical properties of tagged MIL-140A metal–organic frameworks. Inorg Chem 52:12878–12880

    Article  CAS  PubMed  Google Scholar 

  187. Liang W, D’Alessandro DM (2013) Microwave-assisted solvothermal synthesis of zirconium oxide based metal–organic frameworks. Chem Commun 49:3706–3708

    Article  CAS  Google Scholar 

  188. Klinowski J, Paz FAA, Silva P, Rocha J (2011) Microwave-assisted synthesis of metal–organic frameworks. Dalton Trans 40:321–330

    Article  CAS  PubMed  Google Scholar 

  189. De la Hoz A, Diaz-Ortiz A, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34:164–178

    Article  PubMed  Google Scholar 

  190. Ren S, Bojdys MJ, Dawson R, Laybourn A, Khimyak YZ, Adams DJ et al (2012) Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv Mater 24:2357–2361

    Article  CAS  PubMed  Google Scholar 

  191. Campbell NL, Clowes R, Ritchie LK, Cooper AI (2009) Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem Mater 21:204–206

    Article  CAS  Google Scholar 

  192. Wei H, Chai S, Hu N, Yang Z, Wei L, Wang L (2015) The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity. Chem Commun 51:12178–12181

    Article  CAS  Google Scholar 

  193. Matsumoto M, Dasari RR, Ji W, Feriante CH, Parker TC, Marder SR et al (2017) Rapid, low temperature formation of imine-linked covalent organic frameworks catalyzed by metal triflates. J Am Chem Soc 139:4999–5002

    Article  CAS  PubMed  Google Scholar 

  194. Komatsu K, Wang G-W, Murata Y, Tanaka T, Fujiwara K, Yamamoto K et al (1998) Mechanochemical synthesis and characterization of the fullerene dimer C120. J Org Chem 63:9358–9366

    Article  CAS  Google Scholar 

  195. Biswal BP, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R (2013) Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J Am Chem Soc 135:5328–5331

    Article  CAS  PubMed  Google Scholar 

  196. Das G, Shinde DB, Kandambeth S, Biswal BP, Banerjee R (2014) Mechanosynthesis of imine, β-ketoenamine, and hydrogen-bonded imine-linked covalent organic frameworks using liquid-assisted grinding. Chem Commun 50:12615–12618

    Article  CAS  Google Scholar 

  197. Lu J, Lin F, Wen Q, Qi Q-Y, Xu J-Q, Zhao X (2019) Large-scale synthesis of azine-linked covalent organic frameworks in water and promoted by water. New J Chem 43:6116–6120

    Article  CAS  Google Scholar 

  198. Xie J, Cheng XF, Cao X, He JH, Guo W, Li DS et al (2019) Nanostructured metal–organic conjugated coordination polymers with ligand tailoring for superior rechargeable energy storage. Small 15:1903188

    Article  CAS  Google Scholar 

  199. Wu H, Meng Q, Yang Q, Zhang M, Lu K, Wei Z (2015) Large-area polyimide/swcnt nanocable cathode for flexible lithium-ion batteries. Adv Mater 27:6504–6510

    Article  CAS  PubMed  Google Scholar 

  200. Ding S-Y, Cui X-H, Feng J, Lu G, Wang W (2017) Facile synthesis of–C [double bond, length as m-dash] N–linked covalent organic frameworks under ambient conditions. Chem Commun 53:11956–11959

    Article  CAS  Google Scholar 

  201. Ferguson S, Nechev K, Kelley D (2009) Large format lithium ion battery manufacturing. In: NDIA ground vehicle systems engineering and technology symposium

  202. Jaffe S (2017) Vulnerable links in the lithium-ion battery supply chain. Joule 1:225–228

    Article  Google Scholar 

  203. Kim T, Song W, Son D-Y, Ono LK, Qi Y (2019) Lithium-ion batteries: outlook on present, future, and hybridized technologies. J Mater Chem A 7:2942–2964

    Article  CAS  Google Scholar 

  204. Shen C, Wang H (2019) Research on the technological development of lithium ion battery industry in China. J Phys 1347:012087

    CAS  Google Scholar 

  205. Armand M, Axmann P, Bresser D, Copley M, Edström K, Ekberg C et al (2020) Lithium-ion batteries–current state of the art and anticipated developments. J Power Sources 479:228708

    Article  CAS  Google Scholar 

  206. Hu Z, Li G, Wang A, Luo J, Liu X (2020) Recent progress of electrolyte design for lithium metal batteries. Batteries Supercaps 3:331–335

    Article  CAS  Google Scholar 

  207. Zhang P, Xingqiang L, Junrong S, Zhang D, Yongheng Y, Zhang R et al (2021) Research and industrialization progress of solid-state lithium battery. Energy Storage Sci Technol 10:896

    Google Scholar 

  208. Kim S, Park G, Lee SJ, Seo S, Ryu K, Kim CH et al (2023) Lithium-metal batteries: from fundamental research to industrialization. Adv Mater. https://doi.org/10.1002/adma.202206625

    Article  PubMed  PubMed Central  Google Scholar 

  209. Darga J, Lamb J, Manthiram A (2020) Industrialization of layered oxide cathodes for lithium-ion and sodium-ion batteries: a comparative perspective. Energ Technol 8:2000723

    Article  CAS  Google Scholar 

  210. Li M, Qiu J, Zhang S, Zhao P, Jin Z, Wang A et al (2020) Micrometer-sized ferrosilicon composites wrapped with multi-layered carbon nanosheets as industrialized anodes for high energy lithium-ion batteries. J Energy Chem 50:286–295

    Article  Google Scholar 

  211. Sun Z, Jiao L, Fan Y, Li F, Wang D, Han D et al (2016) Industrialization of tailoring spherical cathode material towards high-capacity, cycling-stable and superior low temperature performance for lithium-ion batteries. RSC Adv 6:97818–97824

    Article  CAS  Google Scholar 

  212. Zhang Y, Wang Z-B, Nie M, Yu F-D, Xia Y-F, Liu B-S et al (2016) A simple method for industrialization to enhance the tap density of LiNi0.5Co0.2Mn0.3O2 cathode material for high-specific volumetric energy lithium-ion batteries. RSC Adv 6:65941–65949

    Article  CAS  Google Scholar 

  213. Zheng H, Peipei L, Xiaohua T, Zhuo S, Zhang Z (2023) Performance of large-scale silicon particles coated with multistage carbon as anode materials for lithium-ion batteries. Energy Storage Sci Technol 12:23

    Google Scholar 

  214. Zubi G, Dufo-López R, Carvalho M, Pasaoglu G (2018) The lithium-ion battery: state of the art and future perspectives. Renew Sustain Energy Rev 89:292–308

    Article  Google Scholar 

  215. Zanotto FM, Dominguez DZ, Ayerbe E, Boyano I, Burmeister C, Duquesnoy M et al (2022) Data specifications for battery manufacturing digitalization: current status, challenges, and opportunities. Batteries Supercaps 5:e202200224

    Article  Google Scholar 

  216. Mitra S, Kandambeth S, Biswal BP, Khayum MA, Choudhury CK, Mehta M et al (2016) Self-exfoliated guanidinium-based ionic covalent organic nanosheets (iCONs). J Am Chem Soc 138:2823–2828

    Article  CAS  PubMed  Google Scholar 

  217. Haldar S, Roy K, Nandi S, Chakraborty D, Puthusseri D, Gawli Y et al (2018) High and reversible lithium ion storage in self-exfoliated triazole-triformyl phloroglucinol-based covalent organic nanosheets. Adv Energy Mater 8:1702170

    Article  Google Scholar 

  218. Jansen AN, Krumdick GK, Trask SE, Polzin BJ, Lu W, Kahvecioglu Feridun O et al (2016) New aqueous binders for lithium-ion batteries. Argonne National Lab, Argonne, IL

    Book  Google Scholar 

  219. Park J, Park J, Lee J (2016) Stability of LiNi0.6Mn0.2Co0.2O2 as a Cathode material for lithium-ion batteries against air and moisture. Bull Korean Chem Soc 37:344–348

    Article  CAS  Google Scholar 

  220. Machado TF, Serra MES, Murtinho D, Valente AJ, Naushad M (2021) Covalent organic frameworks: synthesis, properties and applications—an overview. Polymers 13:970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Sun T, Xie J, Guo W, Li DS, Zhang Q (2020) Covalent–organic frameworks: advanced organic electrode materials for rechargeable batteries. Adv Energy Mater 10:1904199

    Article  CAS  Google Scholar 

  222. Lu Y, Zhao C-Z, Yuan H, Hu J-K, Huang J-Q, Zhang Q (2022) Dry electrode technology, the rising star in solid-state battery industrialization. Matter 5:876–898

    Article  CAS  Google Scholar 

  223. Zhang M, Chen J, Zhang S, Zhou X, He L, Sheridan MV et al (2020) Electron beam irradiation as a general approach for the rapid synthesis of covalent organic frameworks under ambient conditions. J Am Chem Soc 142:9169–9174

    Article  CAS  PubMed  Google Scholar 

  224. Li X, Yang C, Sun B, Cai S, Chen Z, Liu Y et al (2020) Expeditious synthesis of covalent organic frameworks: a review. J Mater Chem A 8:16045–16060

    Article  CAS  Google Scholar 

  225. Guo Z, Qian G, Wang C, Zhang G, Yin R, Liu W-D et al (2022) Progress in electrode materials for the industrialization of sodium-ion batteries. Prog Nat Sci 33:1–7

    Article  Google Scholar 

  226. Gaab M, Trukhan N, Maurer S, Gummaraju R, Müller U (2012) The progression of Al-based metal-organic frameworks—from academic research to industrial production and applications. Microporous Mesoporous Mater 157:131–136

    Article  CAS  Google Scholar 

  227. Liu J, Wang N, Ma L (2020) Recent advances in covalent organic frameworks for catalysis. Chemistry 15:338–351

    CAS  Google Scholar 

  228. Li Y, Wu Y, Wang Z, Xu J, Ma T, Chen L et al (2022) Progress in solvent-free dry-film technology for batteries and supercapacitors. Mater Today 55:92–109

    Article  CAS  Google Scholar 

  229. Mei Z, Li H, Wang G, Mao Y, Xu Y, Guo J et al (2023) Solvent-free and in situ synthesis of three-dimensional covalent organic frameworks thin films on Zn anodes for Zn–air batteries. Appl Surf Sci 615:156324

    Article  CAS  Google Scholar 

  230. Ryu M, Hong Y-K, Lee S-Y, Park JH (2023) Ultrahigh loading dry-process for solvent-free lithium-ion battery electrode fabrication. Nat Commun 14:1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Yeklangi AG, Rahimi F, Akbari S (2021) Investigation of the electrochemical behavior of ZIF-67@ carbon nanotube and graphene oxide as potential electrode active materials for supercapacitors. J Nanosci Technol 3:1–10

    Google Scholar 

  232. Wei C, Tan L, Zhang Y, Zhang K, Xi B, Xiong S et al (2021) Covalent organic frameworks and their derivatives for better metal anodes in rechargeable batteries. ACS Nano 15:12741–12767

    Article  CAS  PubMed  Google Scholar 

  233. Li X, Su Y, Qin Y, Huang F, Mei S, He Y et al (2023) Spatially confined silver nanoparticles in mercapto metal-organic frameworks to compartmentalize Li deposition towards anode-free lithium metal batteries. Adv Mater. https://doi.org/10.1002/adma.202303489

    Article  PubMed  Google Scholar 

  234. Oh K-S, Park S, Kim J-S, Yao Y, Kim J-H, Guo J et al (2023) Electrostatic covalent organic frameworks as on-demand molecular traps for high-energy Li metal battery electrodes. ACS Energy Lett 8:2463–2474

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AG: Writing the review (abstract, introduction, section 1, section 2 and conclusion). AGY: Editing all of the sections and writing the review (section 4). FA: Writing the review (section 3). SA: Editing and supervision. All authors have read and agreed to publish the manuscript.

Corresponding author

Correspondence to Somayeh Akbari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafari, A., Yeklangi, A.G., Sima, F.A. et al. Industrial-scale synthesis and application of covalent organic frameworks in lithium battery technology. J Appl Electrochem 54, 215–243 (2024). https://doi.org/10.1007/s10800-023-01964-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01964-2

Keywords

Navigation