Skip to main content
Log in

A novel method for electrochemical determination of creatinine in human urine based on its reaction with 2-nitrobenzaldehyde using a glassy carbon electrode

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, an electrochemical method for sensitive determination of creatinine has been reported based on its reaction with 2-nitrobenzaldehyde and using differential pulse voltammetry technique. A plausible mechanism of the reaction has been proposed and successful application of this method for creatinine detection in a real sample (human urine) has also been demonstrated. The mechanism is indicative of the formation of multiple electroactive species in the process. The linear range of detection being 1–25 mM, with LOD of 0.50 mM and an excellent R2 value of 0.99, was suitable enough for the detection of creatinine in human urine. Interference studies of urea, uric acid, glucose, ascorbic acid and dopamine were done and found to be within the acceptable limit. All the components except uric acid showed an interference of less than 3.2%, while uric acid showed maximum interference of 8.4%. Its robustness, high selectivity, good sensitivity, and low detection limit have projected it as a promising new tool for a point-of-care testing device.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. Rao H, Lu Z, Ge H, Liu X, Chen B, Zou P, Wang X, He H, Zeng X, Wang Y (2017) Electrochemical creatinine sensor based on a glassy carbon electrode modified with a molecularly imprinted polymer and a Ni@ polyaniline nanocomposite. Microchim Acta 184:261–269. https://doi.org/10.1007/s00604-016-1998-x

    Article  CAS  Google Scholar 

  2. Sittiwong J, Unob F (2016) Paper-based platform for urinary creatinine detection. Anal Sci 32:639–643. https://doi.org/10.2116/analsci.32.639

    Article  PubMed  CAS  Google Scholar 

  3. Income K, Ratnarathorn N, Khamchaiyo N, Srisuvo C, Ruckthong L, Dungchai W (2019) Disposable nonenzymatic uric acid and creatinine sensors using pad coupled with screen-printed reduced graphene oxide-gold nanocomposites. Int J Anal Chem 2019:3457247. https://doi.org/10.1155/2019/3457247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Jaffe M (1886) Ueber den Niederschlang, welchen Pikrinsaoure in nomalen Harn erzeugt und uber eine neue Reaktion des Kreatinins. Z Physiol Chem 10:391–400. https://doi.org/10.1515/bchm1.1886.10.5.391

    Article  Google Scholar 

  5. de Oliveira Moreira OB, de Souza JCQ, Candido JMB, do Nascimento MP, Chellini PR, de Lemos LM, de Oliveira MAL (2023) Determination of creatinine in urine and blood serum human samples by CZE-UV using on-column internal standard injection. Talanta 258:124465. https://doi.org/10.1016/j.talanta.2023.124465

    Article  PubMed  CAS  Google Scholar 

  6. Liotta E, Gottardo R, Bonizzato L, Pascali JP, Bertaso A, Tagliaro F (2009) Rapid and direct determination of creatinine in urine using capillary zone electrophoresis. Clin Chim Acta 409:52–55. https://doi.org/10.1016/j.cca.2009.08.015

    Article  PubMed  CAS  Google Scholar 

  7. Karn-orachai K, Ngamaroonchote A (2021) Role of polyelectrolyte multilayers over gold film for selective creatinine detection using Raman spectroscopy. Appl Surf Sci 546:149092. https://doi.org/10.1016/j.apsusc.2021.149092

    Article  CAS  Google Scholar 

  8. Yang F, Wen P, Li G, Zhang Z, Ge C, Chen L (2021) High-performance surface-enhanced Raman spectroscopy chip integrated with a micro-optical system for the rapid detection of creatinine in serum. Biomed Opt Express 12:4795–4806. https://doi.org/10.1364/BOE.434053

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gangopadhyay D, Sharma P, Nandi R, Das M, Ghosh S, Singh RK (2016) In vitro concentration dependent detection of creatinine: a surface enhanced Raman scattering and fluorescence study. RSC Adv 6:112562–112567. https://doi.org/10.1039/C6RA22886K

    Article  CAS  Google Scholar 

  10. Hanif S, John P, Gao W, Saqib M, Qi L, Xu G (2016) Chemiluminescence of creatinine/H2O2/Co2+ and its application for selective creatinine detection. Biosens Bioelectron 75:347–351. https://doi.org/10.1016/j.bios.2015.08.053

    Article  PubMed  CAS  Google Scholar 

  11. Yen TA, Dahal KS, Lavine B, Hassan Z, Gamagedara S (2018) Development and validation of high performance liquid chromatographic method for determination of gentisic acid and related renal cell carcinoma biomarkers in urine. Microchem J 137:85–89. https://doi.org/10.1016/j.microc.2017.09.024

    Article  PubMed  CAS  Google Scholar 

  12. Zuo Y, Wang C, Zhou J, Sachdeva A, Ruelos VC (2008) Simultaneous determination of creatinine and uric acid in human urine by high-performance liquid chromatography. Anal Sci 24:1589–1592. https://doi.org/10.2116/analsci.24.1589

    Article  PubMed  CAS  Google Scholar 

  13. Tsikas D, Wolf A, Mitschke A, Gutzki FM, Will W, Bader M (2010) GC–MS determination of creatinine in human biological fluids as pentafluorobenzyl derivative in clinical studies and biomonitoring: inter-laboratory comparison in urine with Jaffé, HPLC and enzymatic assays. J Chromatogr B 878:2582–2592. https://doi.org/10.1016/j.jchromb.2010.04.025

    Article  CAS  Google Scholar 

  14. Lewińska I, Speichert M, Granica M, Tymecki Ł (2021) Colorimetric point-of-care paper-based sensors for urinary creatinine with smartphone readout. Sens Actuators B 340:129915. https://doi.org/10.1016/j.snb.2021.129915

    Article  CAS  Google Scholar 

  15. Liang L, Xiong Y, Duan Y, Zuo W, Liu L, Ye F, Zhao S (2022) Colorimetric detection of creatinine based on specifically modulating the peroxidase-mimicking activity of Cu-Fenton system. Biosens Bioelectron 206:114121. https://doi.org/10.1016/j.bios.2022.114121

    Article  PubMed  CAS  Google Scholar 

  16. He Y, Zhang X, Yu H (2015) Gold nanoparticles-based colorimetric and visual creatinine assay. Microchim Acta 182:2037–2043. https://doi.org/10.1007/s00604-015-1546-0

    Article  CAS  Google Scholar 

  17. Menéndez G, Amor-Gutiérrez O, García AC, Funes-Menéndez M, Prado C, Miguel D, Rodríguez-González P, González-Gago A, Alonso JIG (2023) Development and evaluation of an electrochemical biosensor for creatinine quantification in a drop of whole human blood. Clin Chim Acta 543:117300. https://doi.org/10.1016/j.cca.2023.117300

    Article  CAS  Google Scholar 

  18. Li J, Li Z, Dou Y, Su J, Shi J, Zhou Y, Wang L, Song S, Fan C (2021) A nano-integrated microfluidic biochip for enzyme-based point-of-care detection of creatinine. Chem Commun 57:4726–4729. https://doi.org/10.1039/D1CC00825K

    Article  CAS  Google Scholar 

  19. Caliskan S, Yildirim E, Anakok DA, Cete S (2022) Design of a new biosensor platform for creatinine determination. J Solid State Electrochem 26:549–557. https://doi.org/10.1007/s10008-021-05107-5

    Article  CAS  Google Scholar 

  20. Pandey PC, Mishra AP (2004) Novel potentiometric sensing of creatinine. Sens Actuators B 99:230–235. https://doi.org/10.1016/j.snb.2003.11.016

    Article  CAS  Google Scholar 

  21. Dasgupta P, Kumar V, Krishnaswamy PR, Bhat N (2020) Biochemical assay for serum creatinine detection through a 1-methylhydantoin and cobalt complex. RSC Adv 10:39092–39101. https://doi.org/10.1039/D0RA06470J

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Chen JC, Kumar AS, Chung HH, Chien SH, Kuo MC, Zen JM (2006) An enzymeless electrochemical sensor for the selective determination of creatinine in human urine. Sens Actuators B 115:473–480. https://doi.org/10.1016/j.snb.2005.10.015

    Article  CAS  Google Scholar 

  23. Kumar RKR, Shaikh MO, Kumar A, Liu CH, Chuang CH (2023) Zwitterion-Functionalized Cuprous Oxide Nanoparticles for highly specific and Enzymeless Electrochemical Creatinine Biosensing in Human serum. ACS Appl Nano Mater 6:2083–2094. https://doi.org/10.1021/acsanm.2c05020

    Article  CAS  Google Scholar 

  24. Teekayupak K, Aumnate C, Lomae A, Preechakasedkit P, Henry CS, Chailapakul O, Ruecha N (2023) Portable smartphone integrated 3D-Printed electrochemical sensor for nonenzymatic determination of creatinine in human urine. Talanta 254:124131. https://doi.org/10.1016/j.talanta.2022.124131

    Article  PubMed  CAS  Google Scholar 

  25. Ponnaiah SK, Periakaruppan P (2020) Carbon dots doped tungstic anhydride on graphene oxide nanopanels: a new picomolar-range creatinine selective enzymeless electrochemical sensor. Mater Sci Eng: C 113:111010. https://doi.org/10.1016/j.msec.2020.111010

    Article  CAS  Google Scholar 

  26. Kumar V, Hebbar S, Kalam R, Panwar S, Prasad S, Srikanta SS, Krishnaswamy PR, Bhat N (2017) Creatinine-iron complex and its use in electrochemical measurement of urine creatinine. IEEE Sens J 18:830–836. https://doi.org/10.1109/JSEN.2017.2777913

    Article  Google Scholar 

  27. Raveendran J, Resmi PE, Ramachandran T, Nair BG, Babu TS (2017) Fabrication of a disposable non-enzymatic electrochemical creatinine sensor. Sens Actuators B 243:589–595. https://doi.org/10.1016/j.snb.2016.11.158

    Article  CAS  Google Scholar 

  28. Singh P, Mandal S, Roy D, Chanda N (2021) Facile detection of blood creatinine using binary copper–iron oxide and rGO-based nanocomposite on 3D printed ag-electrode under POC settings. ACS Biomater Sci Eng 7:3446–3458. https://doi.org/10.1021/acsbiomaterials.1c00484

    Article  PubMed  CAS  Google Scholar 

  29. SATO N, TAKEDA K, NAKAMURA N (2021) Development of a copper-electrodeposited gold electrode for an Amperometric Creatinine Sensor to Detect Creatinine in urine without pretreatment. Electrochemistry 89:313–316. https://doi.org/10.5796/electrochemistry.21-00016

    Article  CAS  Google Scholar 

  30. Fava EL, do Prado TM, Garcia-Filho A, Silva TA, Cincotto FH, de Moraes FC, Faria RC, Fatibello-Filho O (2020) Non-enzymatic electrochemical determination of creatinine using a novel screen-printed microcell. Talanta 207:120277. https://doi.org/10.1016/j.talanta.2019.120277

    Article  PubMed  CAS  Google Scholar 

  31. Fekry AM, Abdel-Gawad SA, Tammam RH, Zayed MA (2020) An electrochemical sensor for creatinine based on carbon nanotubes/folic acid/silver nanoparticles modified electrode. Measurement 163:107958. https://doi.org/10.1016/j.measurement.2020.107958

    Article  Google Scholar 

  32. Boobphahom S, Ruecha N, Rodthongkum N, Chailapakul O, Remcho VT (2019) A copper oxide-ionic liquid/reduced graphene oxide composite sensor enabled by digital dispensing: non-enzymatic paper-based microfluidic determination of creatinine in human blood serum. Anal Chim Acta 1083:110–118. https://doi.org/10.1016/j.aca.2019.07.029

    Article  PubMed  CAS  Google Scholar 

  33. Zhybak M, Beni V, Vagin MY, Dempsey E, Turner AP, Korpan Y (2016) Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite. Biosens Bioelectron 77:505–511. https://doi.org/10.1016/j.bios.2015.10.009

    Article  PubMed  CAS  Google Scholar 

  34. Viswanath KB, Devasenathipathy R, Wang SF, Vasantha VS (2017) A new route for the enzymeless trace level detection of creatinine based on reduced graphene oxide/silver nanocomposite biosensor. Electroanalysis 29:559–565. https://doi.org/10.1002/elan.201600425

    Article  CAS  Google Scholar 

  35. Riegert A (1939) Un nouveau microdosage colorimetrique de la creatininc, son application au plasma et au serum. Compt rend Soc biol 132:535

    CAS  Google Scholar 

  36. Van Pilsum JF, Martin RP, Kito E, Hess J (1956) Determination of creatine, creatinine, arginine, guanidinoacetic acid, guanidine, and methylguanidine in biological fluids. J Biol Chem 222:225–236. https://doi.org/10.1016/s0021-9258(19)50788-8

    Article  PubMed  Google Scholar 

  37. Jones JD, Giovannetti S (1971) Charcoal-catalyzed oxidation of creatinine to methylguanidine. Biochem Med 5:281–284. https://doi.org/10.1016/0006-2944(71)90030-5

    Article  PubMed  CAS  Google Scholar 

  38. Nakai T, Ohta T, Obinata Y, Kojima M (1978) Air Oxidation of Creatine (or Creatinine) in strongly acidic solution: formation of Methylguanidine. Agric Biol Chem 42:891–892. https://doi.org/10.1080/00021369.1978.10863080

    Article  CAS  Google Scholar 

  39. Manissorn J, Fong-Ngern K, Peerapen P, Thongboonkerd V (2017) Systematic evaluation for effects of urine pH on calcium oxalate crystallization, crystal-cell adhesion and internalization into renal tubular cells. Sci Rep 7:1798. https://doi.org/10.1038/s41598-017-01953-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Liu L, Mo H, Wei S, Raftery D (2012) Quantitative analysis of urea in human urine and serum by 1H nuclear magnetic resonance. Analyst 137:595–600. https://doi.org/10.1039/C2AN15780B

    Article  PubMed  CAS  Google Scholar 

  41. Sechi D, Greer B, Johnson J, Hashemi N (2013) Three-dimensional paper-based microfluidic device for assays of protein and glucose in urine. Anal Chem 85:10733–10737. https://doi.org/10.1021/ac4014868

    Article  PubMed  CAS  Google Scholar 

  42. Harris LJ, Ray SN, Ward A (1933) The excretion of vitamin C in human urine and its dependence on the dietary intake. Biochem J 27:2011–2015. https://doi.org/10.1042%2Fbj0272011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Dalirirad S, Steckl AJ (2020) Lateral flow assay using aptamer-based sensing for on-site detection of dopamine in urine. Anal Biochem 596:113637. https://doi.org/10.1016/j.ab.2020.113637

    Article  PubMed  CAS  Google Scholar 

  44. Iwata H, Nishio S, Yokoyama M, Matsumoto A, Takeuchi M (1989) Solubility of uric acid and supersaturation of monosodium urate: why is uric acid so highly soluble in urine? J Urol 142:1095–1098. https://doi.org/10.1016/S0022-5347(17)39003-1

    Article  PubMed  CAS  Google Scholar 

  45. Chauhan N, Kumar A, Pundir CS (2014) Construction of an uricase nanoparticles modified au electrode for amperometric determination of uric acid. Appl Biochem Biotechnol 174:1683–1694. https://doi.org/10.1007/s12010-014-1097-6

    Article  PubMed  CAS  Google Scholar 

  46. Exner O, Böhm S (2005) Protonated nitro group: structure, energy and conjugation. Org Biomol Chem 3:1838–1843. https://doi.org/10.1039/B502152A

    Article  PubMed  CAS  Google Scholar 

  47. Nakamura K, Ohira C, Yamamoto H, Pfleiderer W, Ienaga K (1990) Creatones A and B. Revision of the structure for the product of oxidation of creatinine and creatine. Bull Chem Soc Jpn 63:1540–1542. https://doi.org/10.1246/bcsj.63.1540

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Mr. Nayab Hussain (DST-INSPIRE fellow, IF180956) would like to thank DST-INSPIRE for funding.

Author information

Authors and Affiliations

Authors

Contributions

NH conceived the original idea, carried out the experiments, prepared the figures and wrote the first draft of the manuscript. Both NH and PP carried out the analyses and interpretations. PP supervised the work, provided critical feedback and helped to shape the final manuscript.

Corresponding author

Correspondence to Panchanan Puzari.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1443.3 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, N., Puzari, P. A novel method for electrochemical determination of creatinine in human urine based on its reaction with 2-nitrobenzaldehyde using a glassy carbon electrode. J Appl Electrochem 54, 175–187 (2024). https://doi.org/10.1007/s10800-023-01938-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01938-4

Keywords

Navigation