Skip to main content
Log in

The effect of hydroxide ions on the electrocatalysis of glucose at single platinum nanoparticles

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Glucose oxidation on platinum nanoparticles (Pt NPs) at varying potentials (from − 0.7 V to 0.2 V) was investigated using single entity electrochemistry. The active chemisorption model was found to be valid only at potentials below − 0.6 V, while the incipient hydrous oxide/adatom mediator (IHOAM) model was confirmed for potentials above − 0.6 V. In both cases, hydrous ions significantly improved glucose oxidation by freeing up active sites on the Pt NPs. The potential for glucose sensing at − 0.4 V, where continuous glucose oxidation took place, was assessed. Although the linearity was limited (0.1–0.6 mM), the high sensitivity of 423.056 µA mM− 1 cm− 2 and limit of detection (LOD) of 25.63 µM demonstrated promising prospects for glucose sensing at − 0.4 V, particularly for samples with low glucose concentrations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. IDF (2021) IDF Diabetes Atlas 10th edition.

  2. Lee, I, Probst, D, Klonoff, D, Sode, K (2021) Continuous glucose monitoring systems - current status and future perspectives of the flagship technologies in biosensor research. Biosens Bioelectron 181, 113054.

    Article  CAS  PubMed  Google Scholar 

  3. Gnana kumar G, Amala G, Gowtham SM (2017) Recent advancements, key challenges and solutions in non-enzymatic electrochemical glucose sensors based on graphene platforms. RSC Adv 7:36949–36976

    Article  CAS  Google Scholar 

  4. Hassan, MH, Vyas, C, Grieve, B, Bartolo, P (2021) Recent advances in enzymatic and non-enzymatic Electrochemical glucose sensing. Sensors (Basel) 21, 4672.

    Article  CAS  PubMed  Google Scholar 

  5. Wei, M, Qiao, Y, Zhao, H, Liang, J, Li, T, Luo, Y, Lu, S, Shi, X, Lu, W, Sun, X (2020) Electrochemical non-enzymatic glucose sensors: recent progress and perspectives. Chem. Commun. 56, 14553–14569.

    Article  CAS  Google Scholar 

  6. Liu S, Zeng W, Guo Q, Li Y (2020) Metal oxide-based composite for non-enzymatic glucose sensors. J Mater Sci: Mater Electron 31:16111–16136

    CAS  Google Scholar 

  7. Hwang, DW, Lee, S, Seo, M, Chung, TD (2018) Recent advances in electrochemical non-enzymatic glucose sensors - a review. Anal Chim Acta 1033, 1–34.

    Article  CAS  PubMed  Google Scholar 

  8. Mazurków, JM, Kusior, A, Radecka, M (2021) Electrochemical characterization of modified glassy Carbon Electrodes for non-enzymatic glucose sensors. Sensors 21, 7928.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lin L, Weng S, Zheng Y, Liu X, Ying S, Chen F, You D (2020) Bimetallic PtAu alloy nanomaterials for nonenzymatic selective glucose sensing at low potential. J Electroanal Chem 865:114147

    Article  CAS  Google Scholar 

  10. Olejnik, A, Karczewski, J, Dołęga, A, Siuzdak, K, Grochowska, K (2020) Insightful analysis of Phenomena arising at the metal polymer interphase of Au-Ti based non-enzymatic glucose sensitive electrodes covered by Nafion. Coatings 10, 810.

    Article  CAS  Google Scholar 

  11. Teymourian, H, Barfidokht, A, Wang, J (2020) Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem Soc Rev 49, 7671–7709.

    Article  CAS  PubMed  Google Scholar 

  12. Park, S, Boo, H, Chung, TD (2006) Electrochemical non-enzymatic glucose sensors. Anal Chim Acta 556, 46–57.

    Article  CAS  PubMed  Google Scholar 

  13. Naikoo, GA, Salim, H, Hassan, IU, Awan, T, Arshad, F, Pedram, MZ, Ahmed, W, Qurashi, A (2021) Recent advances in non-enzymatic glucose sensors based on metal and metal oxide nanostructures for Diabetes Management- A Review. Front Chem 9, 748957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Naik KM, Alagur MM, Nandibewoor ST (2013) Electrochemical response of hydroxyurea by different voltammetric techniques at carbon paste electrode. Anal Methods 5:6947

    Article  CAS  Google Scholar 

  15. Naik KM, Nandibewoor ST (2014) Electroanalytical method for the determination of methylparaben. Sens Actuat A: Phys 212:127–132

    Article  CAS  Google Scholar 

  16. Naik KM, Ashi CR, Nandibewoor ST (2015) Anodic voltammetric behavior of hydroxyurea and its electroanalytical determination in pharmaceutical dosage form and urine. J Electroanal Chem 755:109–114

    Article  CAS  Google Scholar 

  17. Bard, AJ, Faulkner, LR (2001) Electrochemcial Methods, Fundamentals and Applications, 2nd Ed. New York: John Wiley & Sons.

    Google Scholar 

  18. Patrice, FT, Qiu, K, Ying, Y-L, Long, Y-T (2019) Single nanoparticle Electrochemistry. Annual Rev. Anal. Chem. 12, 347–370.

    Article  Google Scholar 

  19. Sun Z, Hafez ME, Ma W, Long Y-T (2019) Recent advances in nanocollision electrochemistry. Sci China Chem 62:1588–1600

    Article  CAS  Google Scholar 

  20. Roehrich, B, Sepunaru, L (2020) Nanoimpacts at active and partially active electrodes: Insights and Limitations. Angewandte Chemie International Edition 59, 19184–19192.

    Article  CAS  PubMed  Google Scholar 

  21. Kim, SD, Park, JH, Ahn, H, Lee, J, Shin, C-H, Jang, W-D, Kim, B-K, Ahn, HS (2022) The discrete single-entity electrochemistry of Pickering emulsions. NANOSCALE 14, 6981–6989.

    Article  CAS  PubMed  Google Scholar 

  22. Chen Y, Wang D, Liu Y, Gao G, Zhi J (2021) Redox activity of single bacteria revealed by electrochemical collision technique. Biosens Bioelectron 176:112914

    Article  CAS  PubMed  Google Scholar 

  23. Gao R, Ying Y-L, Hu Y-X, Li Y-J, Long Y-T (2017) Wireless Bipolar Nanopore Electrode for single small molecule detection. Anal Chem 89:7382–7387

    Article  CAS  PubMed  Google Scholar 

  24. Dick, JE, Bard, AJ (2015) Recognizing single collisions of PtCl62– at Femtomolar concentrations on Ultramicroelectrodes by nucleating Electrocatalytic clusters. J. Am. Chem. Soc. 137, 13752–13755.

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y, Austen BJJ, Cornwell T, Tilbury RD, Buntine MA, O’Mullane AP, Arrigan DWM (2017) Collisional electrochemistry of laser-ablated gold nanoparticles by electrocatalytic oxidation of glucose. Electrochem Commun 77:24–27

    Article  CAS  Google Scholar 

  26. Hafez, ME, Ma, H, Ma, W, Long, YT (2019) Unveiling the intrinsic Catalytic Activities of single-gold-nanoparticle-based enzyme mimetics. Angew Chem Int Ed Engl 58, 6327–6332.

    Article  CAS  PubMed  Google Scholar 

  27. Tang, H, Wang, H, Du, J, Zhao, D, Cao, M, Li, Y (2021) Intrinsic Catalytic Activities from single Enzyme@Metal-Organic frameworks by using a Stochastic Collision Electrochemical technique. J Phys Chem Lett 12, 5443–5447.

    Article  CAS  PubMed  Google Scholar 

  28. Popović KD, Marković NM, Tripković AV, Adžić RR (1991) Structural effects in electrocatalysis: oxidation of D-glucose on single crystal platinum electrodes in alkaline solution. J Electroanal Chem Interfacial Electrochem 313:181–199

    Article  Google Scholar 

  29. Tian K, Prestgard M, Tiwari A (2014) A review of recent advances in nonenzymatic glucose sensors. Mater Sci Eng: C 41:100–118

    Article  CAS  Google Scholar 

  30. Beden B, Largeaud F, Kokoh KB, Lamy C (1996) Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of d-glucose: identification of reactive intermediates and reaction products. Electrochim Acta 41:701–709

    Article  CAS  Google Scholar 

  31. Lei H-W, Wu B, Cha C-S, Kita H (1995) Electrooxidation of glucose on platinum in alkaline solution and selective oxidation in the presence of additives. J Electroanal Chem 382:103–110

    Article  Google Scholar 

  32. Ramaswamy N, Mukerjee S (2011) Influence of inner- and outer-sphere Electron transfer mechanisms during Electrocatalysis of Oxygen Reduction in Alkaline Media. J Phys Chem C 115:18015–18026

    Article  CAS  Google Scholar 

  33. Si P, Huang Y, Wang T, Ma J (2013) Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv 3:3487

    Article  CAS  Google Scholar 

  34. Favaro M, Valero-Vidal C, Eichhorn J, Toma FM, Ross PN, Yano J, Liu Z, Crumlin EJ (2017) Elucidating the alkaline oxygen evolution reaction mechanism on platinum. J Mater Chem A 5:11634–11643

    Article  CAS  Google Scholar 

  35. Niu XH, Shi LB, Zhao HL, Lan MB (2016) Advanced strategies for improving the analytical performance of Pt-based nonenzymatic electrochemical glucose sensors: a minireview. Anal Methods 8:1755–1764

    Article  CAS  Google Scholar 

  36. Toghill K, Compton R (2010) Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int. J. Electrochem. Sci. Int J 5:1246–1301

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from Zhejiang Provincial Natural Science Foundation of China (Grant No. LY21F050004).

Author information

Authors and Affiliations

Authors

Contributions

JL and SL wrote the main manuscript text. JW and WZ conducted all the experiments. DZ, QX and YZ conducted the data analyzing and prepared all the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jun Lin.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 725.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Wang, J., Li, S. et al. The effect of hydroxide ions on the electrocatalysis of glucose at single platinum nanoparticles. J Appl Electrochem 53, 1991–1999 (2023). https://doi.org/10.1007/s10800-023-01905-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01905-z

Keywords

Navigation