Skip to main content

Advertisement

Log in

Layered double hydroxides (LDHs)-conducting polymers (CPs)-based electroactive materials for supercapacitor application

  • Review Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Continuous efforts are on from scientists to develop new and efficient materials for their use in energy storage and conversion devices. Recently, Layered Double Hydroxides (LDHs) have paved their way for the application of them as electroactive materials in supercapacitor devices. The LDHs are considered attractive materials because of their various tunable properties. But, along with many fruitful properties, the main drawback of LDHs is their structural instability. This can be overcomed by addition of different materials such as conducting polymers (CPs) and by preparation of nanocomposites of them. CPs can be advantageous as they act as current carrier as well as binder, which can help LDHs bind very well to the substrate. This timely short review uniquely focuses on recent works done in the area of LDHs-CPs-based nanocomposites for supercapacitor application. The importance of LDHs-CPs-based materials is highlighted by referring to the relevant and latest important examples from the literature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No data were used.

References

  1. Yang H, Zhang J, Yi B (2017) Clean energy technology: materials, processes and devices for electrochemical energy conversion and storage. Front Energy 11:233–235. https://doi.org/10.1007/s11708-017-0501-7

    Article  Google Scholar 

  2. Lan P, Han D, Zhang R, Xu X, Yan Z (2022) Optimal portfolio design of energy storage devices with financial and physical right market. Front Energy 16:95–104. https://doi.org/10.1007/s11708-021-0788-2

    Article  Google Scholar 

  3. Pershaanaa M, Bashir S, Ramesh S, Ramesh K (2022) Every bite of Supercap: a brief review on construction and enhancement of supercapacitor. J Energy Storage 50:104599. https://doi.org/10.1016/j.est.2022.104599

    Article  Google Scholar 

  4. Deng W, Wu T, Wu Y, Zheng H, Li G, Yang M, Zou X, Bai Y, Yang Y, Jing Y, Wang M (2022) Single atomic Fe-pyridine N catalyst with dense active sites improve bifunctional electrocatalyst activity for rechargeable and flexible Zn-air batteries. J Mater Chem A 10:20993. https://doi.org/10.1039/d2ta06351d

    Article  CAS  Google Scholar 

  5. Zhuang Q-Q (2020) Preparation of layered-porous carbon from coal tar pitch narrow fractions by single-solvent extraction for superior cycling stability electric double layer capacitor application. J Colloid Interf Sci 567:347–356. https://doi.org/10.1016/j.jcis.2020.02.022

    Article  CAS  Google Scholar 

  6. Libich J, Máca J, Vondrák J, Čech O, Sedlaříková M (2018) Supercapacitors: properties and applications. J Energy Storage 17:224–227. https://doi.org/10.1016/j.est.2018.03.012

    Article  Google Scholar 

  7. Patil PH, Kulkarni VV, Jadhav SA (2022) An overview of recent advancements in conducting polymer- metal oxide nanocomposites for supercapacitor application. J Compos Sci 6:363. https://doi.org/10.3390/jcs6120363

    Article  CAS  Google Scholar 

  8. Li Y, Zhou M, Xia Z, Gong Q, Liu X, Yang Y, Gao Q (2020) Facile preparation of polyaniline covalently grafted to isocyanate functionalized reduced graphene oxide nanocomposite for high performance flexible supercapacitors. Colloids Surf A Physicochem Eng Asp 602:125172. https://doi.org/10.1016/j.colsurfa.2020.125172

    Article  CAS  Google Scholar 

  9. Feng Y, Liu W, Wang Y, Gao W, Li J, Liu K, Wang X, Jiang J (2020) Oxygen vacancies enhance supercapacitive performance of CuCo2O4 in high-energy-density asymmetric supercapacitors. J Power Sources 458:228005. https://doi.org/10.1016/j.jpowsour.2020.228005

    Article  CAS  Google Scholar 

  10. Huo S, Zhao Y, Zong M, Liang B, Zhang X, Khan I, Song U, Li X (2020) Boosting supercapacitor and capacitive deionization performance of hierarchically porous carbon by polar surface and structural engineering. J Mater Chem A 8:2505–2517. https://doi.org/10.1039/C9TA12170F

    Article  CAS  Google Scholar 

  11. Tian Y, Du H, Sarwar S, Dong W, Zheng Y, Wang S, Guo Q, Luo J, Zhang X (2021) High-performance supercapacitors based on Ni2P@CNT nanocomposites prepared using an ultrafast microwave approach. Front Chem Sci Eng 15:1021–1032. https://doi.org/10.1007/s11705-020-2006-x

    Article  CAS  Google Scholar 

  12. Saber O, Ansari SA, Alshoaibi A (2020) Development of Ti/Ni nanolayered structures to be a new candidate for energy storage applications. Appl Sci 10:6935. https://doi.org/10.3390/app10196935

    Article  CAS  Google Scholar 

  13. Yang Y, Chen X, Cao Y, Zhou W, Sun H, Chai H (2020) Synthesis of Homogeneous Hollow Co 3 O 4 microspheres for enhanced cycle life and Electrochemical Energy Storage performance. ChemElectroChem 7:723–729. https://doi.org/10.1002/celc.201902162

    Article  CAS  Google Scholar 

  14. Heng I, Low FW, Lai CW, Juan JC, Tiong SK (2020) Hybrid graphene titanium nanocomposites and their applications in energy storage devices: a review. J Electon Mater 49:1777–1786. https://doi.org/10.1007/s11664-019-07791-6

    Article  CAS  Google Scholar 

  15. Dubey R, Guruviah V (2019) Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 25:1419–1445. https://doi.org/10.1007/s11581-019-02874-0

    Article  CAS  Google Scholar 

  16. Li Y, Han X, Yi T, He Y, Li X (2019) Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes. J Energy Chem 31:54–78. https://doi.org/10.1016/j.jechem.2018.05.010

    Article  Google Scholar 

  17. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12. https://doi.org/10.1016/j.jpowsour.2010.06.084

    Article  CAS  Google Scholar 

  18. Mohd Abdah MAA, Azman NHN, Kulandaivalu S, Sulaiman Y (2020) Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater Design 186:108199. https://doi.org/10.1016/j.matdes.2019.108199

    Article  CAS  Google Scholar 

  19. Park S-J, Son Y-R, Heo Y-J (2018) Prospective synthesis approaches to emerging materials for Supercapacitor. Emerging materials for Energy Conversion and Storage. Elsevier, Amsterdam, pp 185–208

    Google Scholar 

  20. Meer S, Kausar A, Iqbal T (2016) Trends in conducting polymer and hybrids of conducting polymer/carbon nanotube: a review. Polym Plast Technol Eng 55:1416–1440. https://doi.org/10.1080/03602559.2016.1163601

    Article  CAS  Google Scholar 

  21. Jing C, Liu X, Yao H, Yan P, Zhao G, Bai X, Dong B, Dong F, Li S, Zhang Y (2019) Phase and morphology evolution of CoAl LDH nanosheets towards advanced supercapacitor applications. CrystEngComm 21:4934–4942. https://doi.org/10.1039/C9CE00905A

    Article  CAS  Google Scholar 

  22. Zhang Y, Xu H, Lu S (2021) Preparation and application of layered double hydroxide nanosheets. RSC Adv 11:24254–24281. https://doi.org/10.1039/D1RA03289E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bi X, Zhang H, Dou L (2014) Layered double hydroxide-based nanocarriers for drug delivery. Pharmaceutics 6:298–332. https://doi.org/10.3390/pharmaceutics6020298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rohit RC, Jagadale AD, Shinde SK, Kim D-Y (2021) A review on electrodeposited layered double hydroxides for energy and environmental applications. Mater Today Commun 27:102275. https://doi.org/10.1016/j.mtcomm.2021.102275

    Article  CAS  Google Scholar 

  25. Li A, Deng H, Ye C, Jiang Y (2020) Fabrication and characterization of novel ZnAl-layered double hydroxide for the superadsorption of organic contaminants from wastewater. ACS Omega 5:15152–15161. https://doi.org/10.1021/acsomega.0c01092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yan A-L, Wang X-C, Cheng J-P (2018) Research progress of NiMn layered double hydroxides for supercapacitors: a review. Nanomaterials 8:747. https://doi.org/10.3390/nano8100747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tomboc GM, Kim J, Wang Y, Son Y, Li J, Kim JY, Lee K (2021) Hybrid layered double hydroxides as multifunctional nanomaterials for overall water splitting and supercapacitor applications. J Mater Chem A 9:4528–4557. https://doi.org/10.1039/D0TA11606H

    Article  CAS  Google Scholar 

  28. Gao X, Wang P, Pan Z, Claverie JP, Wang J (2020) Recent progress in two-dimensional layered double hydroxides and their derivatives for supercapacitors. Chemsuschem 13:1226–1254. https://doi.org/10.1002/cssc.201902753

    Article  CAS  PubMed  Google Scholar 

  29. Wang L, Li S, Huang F, Yu X, Liu M, Zhang H (2019) Interface modification of hierarchical Co9S8@NiCo layered dihydroxide nanotube arrays using polypyrrole as charge transfer layer in flexible all-solid asymmetric supercapacitors. J Power Sources 439:227103. https://doi.org/10.1016/j.jpowsour.2019.227103

    Article  CAS  Google Scholar 

  30. Hu W, Chen L, Du M, Song Y, Wu Z, Zheng Q (2020) Hierarchical NiCo-layered double hydroxide nanoscroll@PANI nanocomposite for high performance battery-type supercapacitor. Electrochim Acta 338:135869. https://doi.org/10.1016/j.electacta.2020.135869

    Article  CAS  Google Scholar 

  31. Ge X, He Y, Plachy T, Kazantseva N, Saha P, Cheng Q (2019) Hierarchical PANI/NiCo-LDH core-shell composite networks on carbon cloth for high performance asymmetric supercapacitor. Nanomaterials 9:527. https://doi.org/10.3390/nano9040527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shao M, Li Z, Zhang R, Ning F, Wei M, Evans DG, Duan X (2015) Hierarchical conducting Polymer@Clay core-shell arrays for flexible all-solid-state supercapacitor devices. Small 11:3530–3538. https://doi.org/10.1002/smll.201403421

    Article  CAS  PubMed  Google Scholar 

  33. Cao X, Zeng H, Yi M, Zou K, Xu S (2019) Preparation of NiAl double hydroxide@polypyrrole materials for high-performance supercapacitors. J Polym Sci Part B: Polym Phys 57:1653–1662. https://doi.org/10.1002/polb.24896

    Article  CAS  Google Scholar 

  34. Kuila BK (2020) Nanoheterostructured materials based on conjugated polymer and two-dimensional materials: synthesis and applications. Nanoscale Heterostructured Materials. Elsevier, Amsterdam, pp 91–124

    Chapter  Google Scholar 

  35. Shao M, Zhang R, Li Z, Wei M, Evans DG, Duan X (2015) Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications. Chem Commun 51:15880–15893. https://doi.org/10.1039/C5CC07296D

    Article  CAS  Google Scholar 

  36. Jing C, Dong B, Zhang Y (2020) Chemical modifications of layered double hydroxides in the Supercapacitor. Energy Environ Mater 3:346–379. https://doi.org/10.1002/eem2.12116

    Article  CAS  Google Scholar 

  37. Wu H, Zhang Y, Yuan W, Zhao Y, Luo S, Yuan X, Zheng L, Cheng L (2018) Highly flexible, foldable and stretchable Ni–Co layered double hydroxide/polyaniline/bacterial cellulose electrodes for high-performance all-solid-state supercapacitors. J Mater Chem A 6:16617–16626. https://doi.org/10.1039/C8TA05673K

    Article  CAS  Google Scholar 

  38. Dou J, Chen J, Huang Q, Huang H, Mao L, Deng F, Wen Y, Zhu X, Zhang X, Wei Y (2020) Preparation of polymer functionalized layered double hydroxide through mussel-inspired chemistry and Kabachnik–Fields reaction for highly efficient adsorption. J Environ Chem Eng 8:103634. https://doi.org/10.1016/j.jece.2019.103634

    Article  CAS  Google Scholar 

  39. Sarfraz M (2017) Recent advances in layered double hydroxides as electrode materials for high-performance electrochemical energy storage devices. J Energy Storage. https://doi.org/10.1016/j.est.2017.06.011

    Article  Google Scholar 

  40. Wang T, Zhang S, Yan X, Lyu M, Wang L, Bell J, Wang H (2017) 2–Methylimidazole-derived Ni– Co layered double hydroxide nanosheets as high rate capability and high energy density storage material in hybrid supercapacitors. ACS Appl Mater Interfaces 9:15510–15524. https://doi.org/10.1021/acsami.7b02987

    Article  CAS  PubMed  Google Scholar 

  41. Li X, Du D, Zhang Y, Xing W, Xue Q, Yan Z (2017) Layered double hydroxides toward high-performance supercapacitors. J Mater Chem A. https://doi.org/10.1039/C7TA04001F

    Article  Google Scholar 

  42. Tyagi A, Joshi M-C, Shah A, Thakur V-K, Gupta R-K (2019) Hydrothermally tailored three-dimensional Ni– V layered double hydroxide nanosheets as high-performance hybrid supercapacitor applications. ACS Omega 4:3257–3267. https://doi.org/10.1021/acsomega.8b03618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saber O, Ansari SA, Osama A, Osama M (2022) One-dimensional Nanoscale Si/Co based on layered double hydroxides towards Electrochemical. Supercapacitor Electrodes Nanomaterials 12:1404. https://doi.org/10.3390/nano12091404

    Article  CAS  PubMed  Google Scholar 

  44. Saber O, Ansari SA, Aljaafari A (2021) Enhancement of the Supercapacitive performance of cobalt-tin-cyanate layered structures through conversion from 2D materials to 1D nanofibers  Appl Sci 11:4289. https://doi.org/10.3390/app11094289

    Article  CAS  Google Scholar 

  45. Jing M, Hou H, Banks CE, Yang Y, Zhang Y, Ji X (2015) Alternating voltage introduced NiCo double hydroxide layered nanoflakes for an asymmetric supercapacitor. ACS Appl Mater Interfaces 7:22741–22744. https://doi.org/10.1021/acsami.5b05660

    Article  PubMed  Google Scholar 

  46. Xing C, Musharavati F, Li H, Zalezhad E, Hui OKS, Bae S, Cho B-Y (2017) Synthesis, characterization, and properties of nickel–cobalt layered double hydroxide nanostructures. RSC Adv 7:38945–38950. https://doi.org/10.1039/C7RA06670H

    Article  CAS  Google Scholar 

  47. Chen X (2023) Kinetics-favorable heterojunctional CNTs@CuCo-LDH/BPQD electrode with boosted charge storage capability for supercapacitor. Appl Surf Sci 609:155287. https://doi.org/10.1016/j.apsusc.2022.155287

    Article  CAS  Google Scholar 

  48. Fu H (2023) Embedding of conductive ag nanoparticles among honeycomb-like NiMn layered double hydroxide nanosheet arrays for ultra-high performance flexible supercapacitors. J Colloid Interface Sci 629:938–949. https://doi.org/10.1016/j.jcis.2022.08.175

    Article  CAS  PubMed  Google Scholar 

  49. Xie Y (2023) Self-templated transformation of Co-ZIF-L into hierarchical porous CoS2/Co-Ni LDHs with improved electrochemical activities. J Colloid Interface Sci 629:786–793. https://doi.org/10.1016/j.jcis.2022.08.140

    Article  CAS  PubMed  Google Scholar 

  50. Rosaiah P, Prakash NG, Divya P, Sambasivam S, Shkir M, Algarni H, Ko TJ (2022) One-pot synthesis of flower-like Ni-Co/reduced graphene oxide layered double hydroxide nanocomposites as advanced electrodes for high-performance asymmetric supercapacitors. J Energy Storage 56:106133. https://doi.org/10.1016/j.est.2022.106133

    Article  Google Scholar 

  51. Wang J, Mao J, Ma F, Qi K, Liu Y, Cheng L, Chen R (2022) Nickel-cobalt layered double hydroxide fabricated on TiO2/C nanofiber arrays as free standing electrode for high performance supercapacitors. J Alloys Compd 920:165909. https://doi.org/10.1016/j.jallcom.2022.165909

    Article  CAS  Google Scholar 

  52. Zhao Z (2022) Rational design of Ti3C2Cl2 MXenes nanodots-interspersed MXene@NiAl-layered double hydroxides for enhanced pseudocapacitor storage. J Colloid Interf Sci 609:393–402. https://doi.org/10.1016/j.jcis.2021.12.041

    Article  CAS  Google Scholar 

  53. Zarean Mousaabadi K, Ensafi AA, Rezaei B (2022) Co3O4 /MoCo/Layered double hydroxide nanosheets for asymmetric supercapacitor. ACS Appl Nano Mater 5:8097–8104. https://doi.org/10.1021/acsanm.2c01236

    Article  CAS  Google Scholar 

  54. Pan J, Li S, Zhang L, Li F, Yan E, Zhang D (2022) Rational construction of ZnCo-ZIF-derived ZnS@CoS@NiV-LDH/NF binder-free electrodes via core–shell design for supercapacitor applications with enhanced rate capability. ACS Appl Energy Mater 5:6886–6895. https://doi.org/10.1021/acsaem.2c00508

    Article  CAS  Google Scholar 

  55. Pan Q, Zheng F, Deng D, Chen B, Wang Y (2021) Interlayer spacing regulation of NiCo-LDH nanosheets with ultrahigh specific capacity for battery-type supercapacitors. ACS Appl Mater Interfaces 13:56692–56703. https://doi.org/10.1021/acsami.1c19320

    Article  CAS  PubMed  Google Scholar 

  56. Zhang M (2023) Sodium dodecyl sulfate intercalated two-dimensional nickel-cobalt layered double hydroxides to synthesize multifunctional nanomaterials for supercapacitors and electrocatalytic hydrogen evolution. Fuels 333:126323. https://doi.org/10.1016/j.fuel.2022.126323

    Article  CAS  Google Scholar 

  57. Ge X, Gu C-D, Wang X-L, Tu J-P (2014) Ionothermal synthesis of cobalt iron layered double hydroxides (LDHs) with expanded interlayer spacing as advanced electrochemical materials. J Mater Chem A 2:17066. https://doi.org/10.1039/c4ta03789h

    Article  CAS  Google Scholar 

  58. Li Z, Han F, Li C, Jiao X, Chen D (2018) Multi-Anion Intercalated Layered double hydroxide nanosheet-assembled hollow nanoprisms with improved pseudocapacitive and electrocatalytic properties. Chem Asian J. 13:1129–1137. https://doi.org/10.1002/asia.201800092

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sadavar SV, Padalkar NS, Shinde RB, Patil AS, Patil UM, Magdum VV, Chitare YM, Kulkarni SP, Kale SB, Bulakhe RN, Bhange DS, Kochuveedu ST, Gunjakar JL (2022) Lattice engineering exfoliation-restacking route for 2D layered double hydroxide hybridized with 0D polyoxotungstate anions: cathode for hybrid asymmetric supercapacitors. Energy Storage Mater 48:101–113. https://doi.org/10.1016/j.ensm.2022.03.005

    Article  Google Scholar 

  60. Sun Y, Wang X, Wu X (2023) High-performance flexible hybrid capacitors by regulating NiCoMoS@Mo0.75-LDH electrode structure. Mater Res Bull 158:112073. https://doi.org/10.1016/j.materresbull.2022.112073

    Article  CAS  Google Scholar 

  61. Padalkar N-S, Sadavar S-V, Shinde R-B, Patil A-S, Patil U-M, Dhawale D-S, Bulakhe R-N, Kim H, Im H, Vinu A, Lokhande C-D, Gunjakar J-L (2022) Layer-by-layer nanohybrids of Ni-Cr-LDH intercalated with 0D polyoxotungstate for highly efficient hybrid supercapacitor. J Colloid Interface Sci 616:548–559. https://doi.org/10.1016/j.jcis.2022.02.091

    Article  CAS  PubMed  Google Scholar 

  62. Zha D, Sun H, Fu Y, Ouyang X, Wang X (2017) Acetate anion-intercalated nickel-cobalt layered double hydroxide nanosheets supported on Ni foam for high-performance supercapacitors with excellent long-term cycling stability. Electrochim Acta 236:18–27. https://doi.org/10.1016/j.electacta.2017.03.108

    Article  CAS  Google Scholar 

  63. Jha A, Wang C, Neelameggham NR, Guillen DP, Li L, Belt CK, Kirchain R, Spangenberger JS, Johnson F, Gomes AJ, Pandey A, Hosemann P (eds) (2016). Springer, Cham

  64. Lei G, Chen D, Li Q, Liu H, Shi Q, Li C (2022) NiCo-layered double hydroxide with cation vacancy defects for high-performance supercapacitors. Electrochim Acta 413:140143. https://doi.org/10.1016/j.electacta.2022.140143

    Article  CAS  Google Scholar 

  65. Jiang H (2018) Layered double hydroxides/polymer nanocomposites. J Chem Res Application 1:1. https://doi.org/10.18086/jcra.v1i1

    Article  Google Scholar 

  66. Mallakpour S, Khadem E (2017) Opportunities and challenges in the use of layered double hydroxide to produce hybrid polymer composites. Hybrid Polymer Composite Materials. Elsevier, Amsterdam, pp 235–261

    Chapter  Google Scholar 

  67. Cao X, Zeng H-Y, Xu S, Yuan J, Han J, Xiao G-F (2019) Facile fabrication of the polyaniline/layered double hydroxide nanosheet composite for supercapacitors. Appl Clay Sci 168:175–183. https://doi.org/10.1016/j.clay.2018.11.011

    Article  CAS  Google Scholar 

  68. He J, Hu Z, Deng K, Zhao R, Lv X, Tian W, Zhang YX, Ji J (2021) A triple-layered PPy@NiCo LDH/FeCo2O4 hybrid crystalline structure with high electron conductivity and abundant interfaces for supercapacitors and oxygen evolution. CrystEngComm 23:2262–2268. https://doi.org/10.1039/D1CE00076D

    Article  CAS  Google Scholar 

  69. Li X, Zhang Y, Xing W, Li L, Xue Q, Yan Z (2016) Sandwich-like graphene/polypyrrole/layered double hydroxide nanowires for high-performance supercapacitors. J Power Sources 331:67–75. https://doi.org/10.1016/j.jpowsour.2016.09.034

    Article  CAS  Google Scholar 

  70. Zhang Y, Du D, Li X, Sun H, Li L, Bai P, Xing W, Xue Q, Yan Z (2017) Electrostatic self-assembly of sandwich-like CoAl-LDH/polypyrrole/graphene nanocomposites with enhanced capacitive performance. ACS Appl Mater Interfaces 9:31699–31709. https://doi.org/10.1021/acsami.7b04792

    Article  CAS  PubMed  Google Scholar 

  71. Kulandaivalu S, Hussein MZ, Mohamad Jaafar A, Mohd Abdah MAA, Azman NHN, Sulaiman Y (2019) A simple strategy to prepare a layer-by-layer assembled composite of Ni–Co LDHs on polypyrrole/rGO for a high specific capacitance supercapacitor. RSC Adv 9:40478–40486. https://doi.org/10.1039/C9RA08134H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hu W, Chen L, Wu X, Du M, Song Y, Wu Z, Zheng Q (2021) Slight zinc doping by an Ultrafast Electrodeposition process boosts the Cycling performance of layered double hydroxides for Ultralong-Life-Span Supercapacitors. ACS Appl Mater Interfaces 13:38346–38357. https://doi.org/10.1021/acsami.1c10386

    Article  CAS  PubMed  Google Scholar 

  73. Wang H, Zou Y, Sun H, Lin Z, Wang F (2020) Reasonable design of polypyrrole nanotubes interconnected Ni-Co layered double hydroxide based composites via ZIF templates for high performance supercapacitor. New J Chem. https://doi.org/10.1039/D0NJ01280G. Meng, X.

    Article  Google Scholar 

  74. Guo Y, Zhang S, Wang J, Liu Z, Liu Y (2020) Facile preparation of high-performance cobalt–manganese layered double hydroxide/polypyrrole composite for battery-type asymmetric supercapacitors. J Alloys Compd 832:154899. https://doi.org/10.1016/j.jallcom.2020.154899

    Article  CAS  Google Scholar 

  75. Yao P, Li Z, Zhu J, Ran X, Shi Z, Zhu J (2021) Controllable synthesis of NiCo-LDH/Co(OH)2@PPY composite via electrodeposition at high deposition voltages for high-performance supercapacitors. J Alloys Compd 875:160042. https://doi.org/10.1016/j.jallcom.2021.160042

    Article  CAS  Google Scholar 

  76. Yuan Y, Zhou J, Rafiq MI, Dai S, Tang J, Tang W (2019) Growth of Ni Mn layered double hydroxide and polypyrrole on bacterial cellulose nanofibers for efficient supercapacitors. Electrochim Acta 295:82–91. https://doi.org/10.1016/j.electacta.2018.10.090

    Article  CAS  Google Scholar 

  77. Zang Y, Luo H, Zhang H, Xue H (2021) Polypyrrole Nanotube-Interconnected NiCo-LDH nanocages derived by ZIF-67 for supercapacitors. ACS Appl Energy Mater 4:1189–1198. https://doi.org/10.1021/acsaem.0c02465

    Article  CAS  Google Scholar 

  78. Cao J, Li J, Li L, Zhang Y, Cai D, Chen D, Han W (2019) Mn-doped Ni/Co LDH nanosheets grown on the natural N dispersed PANI-derived porous carbon template for flexible asymmetric supercapacitor. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.9b01343

    Article  Google Scholar 

  79. Yang G, Takei T, Yanagida S, Kumada N (2019) Enhanced Supercapacitor Performance based on CoAl Layered double hydroxide-polyaniline hybrid electrodes manufactured using Hydrothermal-Electrodeposition Technology. Molecules 24:976. https://doi.org/10.3390/molecules24050976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhao J, Xu S, Tschulik K, Compton R-G, Wei M, O’Hare D, Evans D-G, Duan X (2015) Molecular-scale hybridization of Clay Monolayers and conducting polymer for Thin-Film Supercapacitors. Adv Funct Mater. https://doi.org/10.1002/adfm.201500408

    Article  PubMed  PubMed Central  Google Scholar 

  81. Du D, Wu X, Li S, Zhang Y, Xing W, Li L, Xue Q, Bai P, Yan Z (2017) Remarkable supercapacitor performance of petal-like LDHs vertically grown on graphene/polypyrolle nanoflakes. J Mater Chem A. https://doi.org/10.1039/C7TA00624A

    Article  Google Scholar 

  82. Wang S, Wang J, Liao S, Chen J, Wei Q (2022) Hierarchical core-shell polypyrrole@NiCo layered double hydroxide arrays grown on stainless steel yarn with high flexibility for 1D symmetric yarn-shaped supercapacitors. J Alloys and Compd 926:166811. https://doi.org/10.1016/j.jallcom.2022.166811

    Article  CAS  Google Scholar 

  83. Liang J, Xiang C, Zou Y, Hu X, Chu H, Qiu S, Xu F, Sun L (2020) Spacing graphene and Ni-Co layered double hydroxides with polypyrrole for high-performance supercapacitors. J Mater Sci Technol 55:190–197. https://doi.org/10.1016/j.jmst.2019.10.030

    Article  CAS  Google Scholar 

  84. Zou Y-H, Wang H-N, Sun H-X, Lin Z-X, Wang F, Zhang X, Wang L-J, Meng X, Zhou Z-Y (2020) Construction of polypyrrole nanotubes interconnected ZIFs-templated nickel-cobalt layered double hydroxide via varying the mass of ZIF-67 for supercapacitors with tunable performance. Mater Chem Phys 255:123497. https://doi.org/10.1016/j.matchemphys.2020.123497

    Article  CAS  Google Scholar 

  85. Zhao X, Ma Q, Tao K, Han L (2021) ZIF-Derived porous CoNi2S4 on Intercrosslinked Polypyrrole Tubes for high-performance asymmetric supercapacitors. ACS Appl Energy Mater 4:4199–4207. https://doi.org/10.1021/acsaem.1c00516

    Article  CAS  Google Scholar 

  86. Liu L, Hu X, Zeng H-Y, Yi M-Y, Shen S-G, Xu S, Cao X, Du J-Z (2019) Preparation of NiCoFe-hydroxide/polyaniline composite for enhanced-performance supercapacitors. J Mater Sci Technol 35:1691–1699. https://doi.org/10.1016/j.jmst.2019.04.003

    Article  CAS  Google Scholar 

  87. Cao J, Li L, Xi Y, Li J, Pan X, Chen D, Han W (2018) Core–shell structural PANI-derived carbon@Co–Ni LDH electrode for high-performance asymmetric supercapacitors. Sustain Energy Fuels 2:1350–1355. https://doi.org/10.1039/C8SE00123E

    Article  CAS  Google Scholar 

  88. Hu X, Liu L, Zeng H, Xu S, Cao X, Cao X-J (2019) An advanced NiCoFeO/polyaniline composite for high performance supercapacitor. Chem Asian J 14:977. https://doi.org/10.1002/asia.201801905

    Article  PubMed  Google Scholar 

  89. Shi Z, Yuan Y, Xiao Q, Li Z, Zhu J (2022) Carbonate doped NiCo-LDH modified with PANI for high performance asymmetric supercapacitors. CrystEngComm 24:3546–3555. https://doi.org/10.1039/D2CE00241H

    Article  CAS  Google Scholar 

  90. Huang B, Wu X (2021) Dispersed nickel-cobalt double metal hydroxide self-assembled with polystyrene sulfonic acid polyelectrolyte for the preparation of carbon solid solid supercapacitors with wide temperature range and long cycle stability. Thin Solid Films 734:138838. https://doi.org/10.1016/j.tsf.2021.138838

    Article  CAS  Google Scholar 

  91. Zhou J, Dai S, Li Y, Han F, Yuan Y, Tang J, Tang W (2018) Earth-abundant nanotubes with layered assembly for battery-type supercapacitors. Chem Eng J 350:835–843. https://doi.org/10.1016/j.cej.2018.06.030

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SAJ, VVK, PHP & IUS: all wrote the manuscript, prepared figures and list of citations.

Corresponding author

Correspondence to Sushilkumar A. Jadhav.

Ethics declarations

Competing interests

Authors declare that there is no any conflict of interest or known competing interests associated with this work.

Ethical approval 

Authors approve that the submitted work is original and has not been published elsewhere in any form or language (partially or in full).

Consent for publication 

All authors provided their consent for the publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhav, S.A., Kulkarni, V.V., Patil, P.H. et al. Layered double hydroxides (LDHs)-conducting polymers (CPs)-based electroactive materials for supercapacitor application. J Appl Electrochem 53, 1911–1926 (2023). https://doi.org/10.1007/s10800-023-01899-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01899-8

Keywords

Navigation