Skip to main content

Advertisement

Log in

Rational design and electrochemical validation of reduced graphene oxide (rGO) supported CeO2-Nd2O3/rGO ternary nanocomposite as an efficient material for supercapacitor electrodes

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Carbon-based materials are mostly used in supercapacitor due to control porosity, higher surface area, and easy processing for electrode production. However, it is still challenging to fabricate carbon/metal oxide-based nanocomposite electrodes with various structures and configurations for supercapacitors, particularly for miniaturized electronics. Here, in the present study, CeO2–Nd2O3/rGO ternary nanocomposite was synthesized by facial co-precipitation route, which evident enhanced capacitive performance than CeO2–Nd2O3 binary composite, bare CeO2, and Nd2O3. The rGO was homogeneously anchored on the surface of CeO2–Nd2O3 nanoparticles, forming a semi-spherical morphology. The electrochemical performance of all electrodes was investigated by different measurements. The ternary composite have a higher specific capacitance of 1265 F g−1 at 3 A g−1 current density and maintained 99% retention after 2000th cycles, showing excellent cycling performance and rate capability compared to other grown products. The excellent electrochemical pseudocapacitive performance of the ternary composite-based electrode could be ascribed due to rGO and its interfacial contact with CeO2–Nd2O3. The improved electrode conductivity generates plentiful active sites for charging and discharging and provides an easy path for the fast transportation of ions. These results open an innovative pathway for fabricating rGO and metal oxide-based composite in developing electrochemical energy storage devices for commercial production.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kulurumotlakatla DK, Yedluri AK, Kim HJ (2020) Hierarchical NiCo2S4 nanostructure as highly efficient electrode material for high-performance supercapacitor applications. J Energy Storage 31:101619. https://doi.org/10.1016/j.est.2020.101619

    Article  Google Scholar 

  2. Lee YS, Kumar YA, Sambasivam S et al (2020) CoCu2O4 nanoflowers architecture as an electrode material for battery type supercapacitor with improved electrochemical performance. Nano-Struct Nano-Objects 24:100618. https://doi.org/10.1016/j.nanoso.2020.100618

    Article  CAS  Google Scholar 

  3. Anil Kumar Y, Kim H-J (2018) Preparation and electrochemical performance of NiCo2O4@NiCo2O4 composite nanoplates for high performance supercapacitor applications. New J Chem 42:19971–19978. https://doi.org/10.1039/C8NJ05401K

    Article  CAS  Google Scholar 

  4. Kumar YA, Kumar KD, Kim HJ (2020) Reagents assisted ZnCo2O4 nanomaterial for supercapacitor application. Electrochim Acta 330:135261. https://doi.org/10.1016/j.electacta.2019.135261

    Article  CAS  Google Scholar 

  5. Yedluri AK, Sangaraju S, Ahmed SH et al (2020) Boosting the energy density of highly efficient flexible hybrid supercapacitors via selective integration of hierarchical nanostructured energy materials. Electrochim Acta. https://doi.org/10.1016/j.electacta.2020.137318

    Article  Google Scholar 

  6. Anil Kumar Y, Dasha Kumar K, Kim H-J (2020) Facile preparation of a highly efficient NiZn2O4–NiO nanoflower composite grown on Ni foam as an advanced battery-type electrode material for high-performance electrochemical supercapacitors. Dalt Trans 49:3622–3629. https://doi.org/10.1039/D0DT00268B

    Article  CAS  Google Scholar 

  7. Moniruzzaman M, Anil Kumar Y, Pallavolu MR et al (2022) Two-dimensional core-shell structure of cobalt-doped@MnO2 nanosheets grown on nickel foam as a binder-free battery-type electrode for supercapacitor application. Nanomaterials. https://doi.org/10.3390/nano12183187

    Article  PubMed  PubMed Central  Google Scholar 

  8. Anil Kumar Y, Kim HJ (2018) Effect of time on a hierarchical corn skeleton-like composite of CoO@ZnO as capacitive electrode material for high specific performance supercapacitors. Energies. https://doi.org/10.3390/en11123285

    Article  Google Scholar 

  9. Yedluri AK, Kim HJ (2019) Enhanced electrochemical performance of nanoplate nickel cobaltite (NiCo2O4) supercapacitor applications. RSC Adv 9:1115–1122. https://doi.org/10.1039/c8ra09081e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kumar YA, Mani G, Pallavolu MR et al (2022) Facile synthesis of efficient construction of tungsten disulfide/iron cobaltite nanocomposite grown on nickel foam as a battery-type energy material for electrochemical supercapacitors with superior performance. J Colloid Interface Sci 609:434–446. https://doi.org/10.1016/j.jcis.2021.11.193

    Article  CAS  PubMed  Google Scholar 

  11. Yoon JH, Kumar YA, Sambasivam S et al (2020) Highly efficient copper-cobalt sulfide nano-reeds array with simplistic fabrication strategy for battery-type supercapacitors. J Energy Storage 32:101988. https://doi.org/10.1016/j.est.2020.101988

    Article  Google Scholar 

  12. Bibi N, Xia Y, Ahmed S et al (2018) Highly stable mesoporous CeO2/CeS2 nanocomposite as electrode material with improved supercapacitor electrochemical performance. Ceram Int 44:22262–22270. https://doi.org/10.1016/j.ceramint.2018.08.348

    Article  CAS  Google Scholar 

  13. Wahid A, Asiri AM, Rahman MM (2019) One-step facile synthesis of Nd2O3/ZnO nanostructures for an efficient selective 2,4-dinitrophenol sensor probe. Appl Surf Sci 487:1253–1261. https://doi.org/10.1016/j.apsusc.2019.05.107

    Article  CAS  Google Scholar 

  14. Asaithambi S, Sakthivel P, Karuppaiah M et al (2021) Preparation of Fe-SnO2@CeO2 nanocomposite electrode for asymmetric supercapacitor device performance analysis. J Energy Storage. https://doi.org/10.1016/j.est.2021.102402

    Article  Google Scholar 

  15. Kubra KT, Sharif R, Patil B et al (2020) Hydrothermal synthesis of neodymium oxide nanoparticles and its nanocomposites with manganese oxide as electrode materials for supercapacitor application. J Alloys Compd 815:152104. https://doi.org/10.1016/j.jallcom.2019.152104

    Article  CAS  Google Scholar 

  16. Xie A, Wang H, Zhu Z et al (2021) Mesoporous CeO2-α-MnO2-reduced graphene oxide composite with ultra-high stability as a novel electrode material for supercapacitor. Surf Interfaces. https://doi.org/10.1016/j.surfin.2021.101177

    Article  Google Scholar 

  17. Wu W, Qi W, Zhao Y et al (2019) Hollow CeO2 spheres conformally coated with graphitic carbon for high-performance supercapacitor electrodes. Appl Surf Sci 463:244–252. https://doi.org/10.1016/j.apsusc.2018.08.224

    Article  CAS  Google Scholar 

  18. Tan J, He X, Yin F et al (2021) Incorporating inactive Nd2O3 into Co/N-doped carbon as bifunctional oxygen electrocatalyst for rechargeable Zn-air battery. Catal Today 364:67–79. https://doi.org/10.1016/j.cattod.2019.12.018

    Article  CAS  Google Scholar 

  19. Huang B, Huang C, Chen J, Sun X (2017) Size-controlled synthesis and morphology evolution of Nd2O3 nano-powders using ionic liquid surfactant templates. J Alloys Compd 712:164–171. https://doi.org/10.1016/j.jallcom.2017.04.009

    Article  CAS  Google Scholar 

  20. Miao L, Song Z, Zhu D et al (2020) Recent advances in carbon-based supercapacitors. Mater Adv 1:945–966. https://doi.org/10.1039/d0ma00384k

    Article  CAS  Google Scholar 

  21. Gao Z, Chen C, Chang J et al (2018) Balanced energy density and power density: asymmetric supercapacitor based on activated fullerene carbon soot anode and graphene-Co3O4 composite cathode. Electrochim Acta 260:932–943. https://doi.org/10.1016/j.electacta.2017.12.070

    Article  CAS  Google Scholar 

  22. Lokhande VC, Lokhande AC, Lokhande CD et al (2016) Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers. J Alloys Compd 682:381–403. https://doi.org/10.1016/j.jallcom.2016.04.242

    Article  CAS  Google Scholar 

  23. Li H, Wang SX, Huang Z et al (2014) Effect Nd2O3 content on electrochemical performance of polyaniline/Nd2O3 composites. Polym Adv Technol 25:1163–1168. https://doi.org/10.1002/pat.3372

    Article  CAS  Google Scholar 

  24. Yedluri AK, Kim HJ (2018) Wearable super-high specific performance supercapacitors using a honeycomb with folded silk-like composite of NiCo2O4 nanoplates decorated with NiMoO4 honeycombs on nickel foam. Dalton Trans 47:15545–15554. https://doi.org/10.1039/c8dt03598a

    Article  CAS  PubMed  Google Scholar 

  25. Kim HJ, Naresh B, Cho IH et al (2021) An advanced nano-sticks & flake-type architecture of manganese-cobalt oxide as an effective electrode material for supercapacitor applications. J Energy Storage 40:102702. https://doi.org/10.1016/j.est.2021.102702

    Article  Google Scholar 

  26. Kumar GS, Reddy SA, Maseed H, Reddy NR (2020) Facile hydrothermal synthesis of ternary CeO2-SnO2/rGO nanocomposite for supercapacitor application. Funct Mater Lett 13:1–7. https://doi.org/10.1142/S1793604720510054

    Article  CAS  Google Scholar 

  27. Liu C, Sun H, Qian J et al (2017) Ultrafine Mn3O4/CeO2 nanorods grown on reduced graphene oxide sheets as high-performance supercapacitor electrodes. J Alloys Compd 722:54–59. https://doi.org/10.1016/j.jallcom.2017.06.097

    Article  CAS  Google Scholar 

  28. Zhang H, Gu J, Tong J et al (2016) Hierarchical porous MnO2/CeO2 with high performance for supercapacitor electrodes. Chem Eng J 286:139–149. https://doi.org/10.1016/j.cej.2015.10.057

    Article  CAS  Google Scholar 

  29. Vanitha M, Keerthi CP, Balasubramanian N (2015) Ag nanocrystals anchored CeO2/graphene nanocomposite for enhanced supercapacitor applications. J Alloys Compd 644:534–544. https://doi.org/10.1016/j.jallcom.2015.03.221

    Article  CAS  Google Scholar 

  30. Ji Z, Shen X, Zhou H, Chen K (2015) Facile synthesis of reduced graphene oxide/CeO2 nanocomposites and their application in supercapacitors. Ceram Int 41:8710–8716. https://doi.org/10.1016/j.ceramint.2015.03.089

    Article  CAS  Google Scholar 

  31. Mohammad Shiri H, Ehsani A (2017) Electrosynthesis of neodymium oxide nanorods and its nanocomposite with conjugated conductive polymer as a hybrid electrode material for highly capacitive pseudocapacitors. J Colloid Interface Sci 495:102–110. https://doi.org/10.1016/j.jcis.2017.01.097

    Article  CAS  PubMed  Google Scholar 

  32. Munawar T, Nadeem MS, Mukhtar F et al (2021) Rare earth metal co-doped Zn0.9La0.05M0.05O (M = Yb, Sm, Nd) nanocrystals; energy gap tailoring, structural, photocatalytic and antibacterial studies. Mater Sci Semicond Process. https://doi.org/10.1016/j.mssp.2020.105485

    Article  Google Scholar 

  33. Munawar T, Mukhtar F, Nadeem MS et al (2020) Novel direct dual-Z-scheme ZnO–Er2O3–Nd2O3@reduced graphene oxide heterostructured nanocomposite: synthesis, characterization and superior antibacterial and photocatalytic activity. Mater Chem Phys 253:123249. https://doi.org/10.1016/j.matchemphys.2020.123249

    Article  CAS  Google Scholar 

  34. Zaaba NI, Foo KL, Hashim U et al (2017) Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng 184:469–477. https://doi.org/10.1016/j.proeng.2017.04.118

    Article  CAS  Google Scholar 

  35. Yu H, Zhang B, Bulin C et al (2016) High-efficient synthesis of graphene oxide based on improved hummers method. Sci Rep 6:36143. https://doi.org/10.1038/srep36143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Munawar T, Mukhtar F, Nadeem MS et al (2020) Structural, optical, electrical, and morphological studies of rGO anchored direct dual-Z-scheme ZnO–Sm2O3–Y2O3 heterostructured nanocomposite: an efficient photocatalyst under sunlight. Solid State Sci. https://doi.org/10.1016/j.solidstatesciences.2020.106307

    Article  Google Scholar 

  37. Thamri S, Sta I, Jlassi M et al (2017) Fabrication of ZnO–NiO nanocomposite thin films and experimental study of the effect of the NiO, ZnO concentration on its physical properties. Mater Sci Semicond Process 71:310–320. https://doi.org/10.1016/j.mssp.2017.08.017

    Article  CAS  Google Scholar 

  38. Panigrahy B, Aslam M, Bahadur D (2010) Aqueous synthesis of Mn- and Co-doped ZnO nanorods. J Phys Chem C 114:11758–11763. https://doi.org/10.1021/jp102163b

    Article  CAS  Google Scholar 

  39. Jeejamol DJ, Raj AME, Jayakumari K, Ravidhas C (2018) Optimization of CdO nanoparticles by Zr4+ doping for better photocatalytic activity. J Mater Sci Mater Electron 29:97–116. https://doi.org/10.1007/s10854-017-7893-3

    Article  CAS  Google Scholar 

  40. Munawar T, Iqbal F, Yasmeen S et al (2020) Multi metal oxide NiO–CdO–ZnO nanocomposite–synthesis, structural, optical, electrical properties and enhanced sunlight driven photocatalytic activity. Ceram Int 46:2421–2437. https://doi.org/10.1016/j.ceramint.2019.09.236

    Article  CAS  Google Scholar 

  41. Arunpandian M, Selvakumar K, Raja A et al (2019) Fabrication of novel Nd2O3 /ZnO-GO nanocomposite: an efficient photocatalyst for the degradation of organic pollutants. Colloids Surf A Physicochem Eng Asp 567:213–227. https://doi.org/10.1016/j.colsurfa.2019.01.058

    Article  CAS  Google Scholar 

  42. Yuliani H, Mayasari RD, Kalembang E et al (2019) Analysis of structure and antimicrobial activity of CeO2 and Nd2O3 nanoparticles. Spektra J Fis dan Apl. 4:105–112. https://doi.org/10.21009/spektra.043.01

    Article  Google Scholar 

  43. Akhtar M, Abdou SN, Abdullah T et al (2023) Wet chemical synthesis of C@Nd2O3/rGO nanocomposite: a visible light trigger photocatalyst for efficient water remediation. Opt Mater (Amst) 135:113255. https://doi.org/10.1016/j.optmat.2022.113255

    Article  CAS  Google Scholar 

  44. Folorunso O, Kumar N, Hamam Y et al (2022) Facile solvent/drying fabrication of PVA/PPy/rGO: a novel nanocomposite for energy storage applications. Res Mater 15:100295. https://doi.org/10.1016/j.rinma.2022.100295

    Article  CAS  Google Scholar 

  45. Peng Z, Hu Y, Wang J et al (2019) Fullerene-based in situ doping of N and Fe into a 3D cross-like hierarchical carbon composite for high-performance supercapacitors. Adv Energy Mater 9:1–10. https://doi.org/10.1002/aenm.201802928

    Article  CAS  Google Scholar 

  46. Cheng L, Li XJ, Li J et al (2020) Construction of three-dimensional all-carbon C60/graphene hybrids and their use as electrodes for high performance supercapacitors. Xinxing Tan Cailiao/New Carbon Mater 35:684–695. https://doi.org/10.1016/S1872-5805(20)60522-4

    Article  CAS  Google Scholar 

  47. Kumar CV, Pattammattel A (2017) Characterization techniques for graphene. Intro Graphene. https://doi.org/10.1016/b978-0-12-813182-4.00003-9

    Article  Google Scholar 

  48. Dong F, Meng Y, Han W et al (2019) Morphology effects on surface chemical properties and lattice defects of Cu/CeO2 catalysts applied for low-temperature CO oxidation. Sci Rep 9:1–15. https://doi.org/10.1038/s41598-019-48606-2

    Article  CAS  Google Scholar 

  49. Min C, He Z, Song H et al (2019) Fabrication of novel CeO2/GO/CNTs ternary nanocomposites with enhanced tribological performance. Appl Sci 9:1–11. https://doi.org/10.3390/app9010170

    Article  CAS  Google Scholar 

  50. Li L, Feng H, Wei X et al (2020) Ag as cocatalyst and electron-hole medium in CeO2 QDs/Ag/Ag2 Se Z-scheme heterojunction enhanced the photo-electrocatalytic properties of the photoelectrode. Nanomaterials. https://doi.org/10.3390/nano10020253

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gao H, Fang H, Wu Y, Li M (2017) Controlled hydrothermal synthesis and optical properties of 3D flower-like CeO2 building with 3D hierarchical porous structure. J Mater Sci Mater Electron 28:17587–17591. https://doi.org/10.1007/s10854-017-7695-7

    Article  CAS  Google Scholar 

  52. Zhang J, Wong H, Kakushima K, Iwai H (2016) XPS study on the effects of thermal annealing on CeO2/La2O3 stacked gate dielectrics. Thin Solid Films 600:30–35. https://doi.org/10.1016/j.tsf.2016.01.001

    Article  CAS  Google Scholar 

  53. Ardelean H, Seyeux A, Zanna S et al (2013) Corrosion processes of Mg–Y–Nd–Zr alloys in Na2SO4 electrolyte. Corros Sci 73:196–207. https://doi.org/10.1016/j.corsci.2013.03.036

    Article  CAS  Google Scholar 

  54. Li W, Frenkel AI, Woicik JC et al (2005) Dopant location identification in Nd3+-doped TiO2 nanoparticles. Phys Rev B - Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.72.155315

    Article  Google Scholar 

  55. Wang Z, Xiao L, Liang R et al (2016) Single-crystal-like GdNdOx thin films on silicon substrates by magnetron sputtering and high-temperature annealing for crystal seed layer application. AIP Adv 10(1063/1):4954880

    Google Scholar 

  56. Qian J, Wang Y, Chen Z et al (2019) Three dimensional Mn3O4-CeO2/holey-graphene hierarchical architectures from stem for high-performance asymmetric supercapacitors. Inorg Chem Commun 104:8–13. https://doi.org/10.1016/j.inoche.2019.03.032

    Article  CAS  Google Scholar 

  57. Selvamani PS, Vijaya JJ, Kennedy LJ et al (2021) Facile microwave synthesis of cerium oxide@molybdenum di-sulphide@reduced graphene oxide ternary composites as high performance supercapacitor electrode. J Electroanal Chem 895:115401. https://doi.org/10.1016/j.jelechem.2021.115401

    Article  CAS  Google Scholar 

  58. Wang Z, Zhao K, Lu S, Xu W (2020) Application of flammulina-velutipes-like CeO2/Co3O4/rGO in high-performance asymmetric supercapacitors. Electrochim Acta 353:136599. https://doi.org/10.1016/j.electacta.2020.136599

    Article  CAS  Google Scholar 

  59. Padmanathan N, Selladurai S (2014) Shape controlled synthesis of CeO2 nanostructures for high performance supercapacitor electrodes. RSC Adv 4:6527–6534. https://doi.org/10.1039/c3ra43339k

    Article  CAS  Google Scholar 

  60. Kumar YA, Das HT, Guddeti PR et al (2022) Self-supported Co3O4@Mo-Co3O4 needle-like nanosheet heterostructured architectures of battery-type electrodes for high-performance asymmetric supercapacitors. Nanomaterials, 12(14):2330. https://doi.org/10.3390/nano12142330

  61. Mola BA, Pallavolu MR, Al-Asbahi BA et al (2022) Design and construction of hierarchical MnFe2Ce4@MnNiCe4 nanosheets on Ni foam as an advanced electrode for battery-type supercapacitor applications. J Energy Storage 51:104542. https://doi.org/10.1016/j.est.2022.104542

    Article  Google Scholar 

  62. Luo Y, Yang T, Zhao Q, Zhang M (2017) CeO2/CNTs hybrid with high performance as electrode materials for supercapacitor. J Alloys Compd 729:64–70. https://doi.org/10.1016/j.jallcom.2017.09.165

    Article  CAS  Google Scholar 

  63. Sardar S, Munawar T, Mukhtar F et al (2023) Fullerene trigged energy storage and photocatalytic ability of La2O3–ZnO@C60 core-shell nanocomposite. Mater Sci Eng B Solid-State Mater Adv Technol 288:116151. https://doi.org/10.1016/j.mseb.2022.116151

    Article  CAS  Google Scholar 

  64. Munawar T, Sardar S, Mukhtar F et al (2023) Fabrication of fullerene-supported La2O3–C60 nanocomposites: dual-functional materials for photocatalysis and supercapacitor electrodes. Phys Chem Chem Phys. https://doi.org/10.1039/D2CP05357H

    Article  PubMed  Google Scholar 

  65. Xiao X, Han B, Chen G et al (2017) Preparation and electrochemical performances of carbon sphere@ZnO core-shell nanocomposites for supercapacitor applications. Sci Rep 7:1–13. https://doi.org/10.1038/srep40167

    Article  CAS  Google Scholar 

  66. Nallappan M, Gopalan M (2018) Fabrication of CeO2/PANI composites for high energy density supercapacitors. Mater Res Bull 106:357–364. https://doi.org/10.1016/j.materresbull.2018.05.025

    Article  CAS  Google Scholar 

  67. Hall DS, Bock C, MacDougall BR (2014) An oxalate method for measuring the surface area of nickel electrodes. J Electrochem Soc 161:H787–H795. https://doi.org/10.1149/2.0711412jes

    Article  CAS  Google Scholar 

  68. Machado SAS, Avaca LA (1994) The hydrogen evolution reaction on nickel surfaces stabilized by H-absorption. Electrochim Acta 39:1385–1391. https://doi.org/10.1016/0013-4686(94)E0003-I

    Article  CAS  Google Scholar 

  69. Cossar E, Houache MSE, Zhang Z, Baranova EA (2020) Comparison of electrochemical active surface area methods for various nickel nanostructures. J Electroanal Chem 870:114246. https://doi.org/10.1016/j.jelechem.2020.114246

    Article  CAS  Google Scholar 

  70. Kumar YA, Al-Asbahi BA, Pallavolu MR et al (2022) Multiple structural defects in poor crystalline nickel-doped tungsten disulfide nanorods remarkably enhance supercapacitive performance. Int J Energy Res 46:14227–14239. https://doi.org/10.1002/er.8137

    Article  CAS  Google Scholar 

  71. Skibińska K, Kutyła D, Yang X et al (2022) Rhodium-decorated nanoconical nickel electrode synthesis and characterization as an electrochemical active cathodic material for hydrogen production. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2022.153326

    Article  Google Scholar 

  72. Saranya PE, Selladurai S (2019) Mesoporous 3D network Ce-doped NiO nanoflakes as high performance electrodes for supercapacitor applications. New J Chem 43:7441–7456. https://doi.org/10.1039/c9nj00097f

    Article  CAS  Google Scholar 

  73. Munawar T, Mukhtar F, Nadeem MS et al (2022) Fabrication of dual Z-scheme TiO2-WO3-CeO2 heterostructured nanocomposite with enhanced photocatalysis, antibacterial, and electrochemical performance. J Alloys Compd 898:162779. https://doi.org/10.1016/j.jallcom.2021.162779

    Article  CAS  Google Scholar 

  74. Majumder M, Choudhary RB, Thakur AK et al (2018) Rare earth metal oxide (RE2O3; RE = Nd, Gd, and Yb) incorporated polyindole composites: gravimetric and volumetric capacitive performance for supercapacitor applications. New J Chem 42:5295–5308. https://doi.org/10.1039/c8nj00221e

    Article  CAS  Google Scholar 

  75. Sarpoushi MR, Nasibi M, Golozar MA et al (2014) Electrochemical investigation of graphene/cerium oxide nanoparticles as an electrode material for supercapacitors. Mater Sci Semicond Process 26:374–378. https://doi.org/10.1016/j.mssp.2014.04.034

    Article  CAS  Google Scholar 

  76. Wang Y, Guo CX, Liu J et al (2011) CeO2 nanoparticles/graphene nanocomposite-based high performance supercapacitor. Dalt Trans 40:6388–6391. https://doi.org/10.1039/c1dt10397k

    Article  CAS  Google Scholar 

  77. Arunachalam S, Kirubasankar B, Rajagounder Nagarajan E et al (2018) A facile chemical precipitation method for the synthesis of Nd(OH)3 and La(OH)3 nanopowders and their supercapacitor performances. ChemistrySelect 3:12719–12724. https://doi.org/10.1002/slct.201803151

    Article  CAS  Google Scholar 

  78. Dezfuli AS, Ganjali MR, Naderi HR, Norouzi P (2015) A high performance supercapacitor based on a ceria/graphene nanocomposite synthesized by a facile sonochemical method. RSC Adv 5:46050–46058. https://doi.org/10.1039/c5ra02957k

    Article  CAS  Google Scholar 

  79. Hamnabard N, Valipour A, Anitha VC, Woo Joo S (2021) Effectiveness of undoped and (Nd, Yb)-doped PbTe nanoparticles deposition on supercapacitor performance of TiO2 nanotube arrays. Mater Lett 284:128948. https://doi.org/10.1016/j.matlet.2020.128948

    Article  CAS  Google Scholar 

  80. Cao Y, Liu C, Qian J et al (2017) Novel 3D porous graphene decorated with Co3O4/CeO2 for high performance supercapacitor power cell. J Rare Earths 35:995–1001. https://doi.org/10.1016/S1002-0721(17)61004-4

    Article  CAS  Google Scholar 

  81. Hamnabard N, Hanifehpour Y, Joo SW (2017) Effectiveness of Nd doping and graphene oxide modification on electrochemical performance of CdSe nanorod material. J Ind Eng Chem 49:88–98. https://doi.org/10.1016/j.jiec.2017.01.012

    Article  CAS  Google Scholar 

  82. Kalubarme RS, Kim YH, Park CJ (2013) One step hydrothermal synthesis of a carbon nanotube/cerium oxide nanocomposite and its electrochemical properties. Nanotechnology. https://doi.org/10.1088/0957-4484/24/36/365401

    Article  PubMed  Google Scholar 

  83. Kubra KT, Sharif R, Patil B et al (2020) Hydrothermal synthesis of neodymium oxide nanoparticles and its nanocomposites with manganese oxide as electrode materials for supercapacitor application. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2019.152104

    Article  Google Scholar 

  84. Naveed ur Rehman M, Munawar T, Nadeem MS et al (2021) Facile synthesis and characterization of conducting polymer-metal oxide based core-shell PANI-Pr2O–NiO–Co3O4 nanocomposite: as electrode material for supercapacitor. Ceram Int 47:18497–18509. https://doi.org/10.1016/j.ceramint.2021.03.173

    Article  CAS  Google Scholar 

  85. Naveed ur Rehman M, Munawar T, Nadeem MS et al (2022) Facile synthesis of novel PANI covered Y2O3–ZnO nanocomposite: a promising electrode material for supercapacitor. Solid State Sci 128:106883. https://doi.org/10.1016/j.solidstatesciences.2022.106883

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the Islamia University of Bahawalpur for supporting Research Project No. 3885/ORIC/IUB.2021 entitled: ‘Multifunctional Materials for Energy Storage, Photocatalysis, and Antibacterial Applications’ granted by ORIC. The authors also acknowledge the Qatar Environment and Energy Research Institute (QEERI)’s core lab, Hamad Bin Khalifa University, for performing XPS by Dr. Yongfeng Tong, FTIR by Dr. Kamal Mroue, and TEM characterization by Janarthanan Ponraj.

Author information

Authors and Affiliations

Authors

Contributions

The contribution of individual authors to this manuscript preparation and their role in this study is defined in terms of the following criteria as: Conceptualization, Writing - review & editing, Validation: Faisal Iqbal Tauseef Munawar & Sonia Sardar: Writing - original draft Muhammad Naeem Ashiq & Muammer Koc: Project administration Faisal Mukhtar, Sumaira Manzoor, Muhammad Shahid Nadeem & Shoukat Alim Khan: Formal analysis & Methodology

Corresponding author

Correspondence to Faisal Iqbal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 991 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munawar, T., Sardar, S., Nadeem, M.S. et al. Rational design and electrochemical validation of reduced graphene oxide (rGO) supported CeO2-Nd2O3/rGO ternary nanocomposite as an efficient material for supercapacitor electrodes. J Appl Electrochem 53, 1853–1868 (2023). https://doi.org/10.1007/s10800-023-01885-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01885-0

Keywords

Navigation