Skip to main content

Advertisement

Log in

Effect of NiO/Ni(OH)2 nanostructures in graphene/CNT nanocomposites on their interfacial charge transport kinetics for high-performance supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Graphene sheet/multiwall carbon nanotube (GMC) and its composites with NiO and Ni(OH)2 are synthesized by microwave-assisted technique for the application of high-performance supercapacitor devices. In the present study, carbon nanotubes are used to improve the electrical conductivity and also to prevent the graphene layers from restacking. Moreover, these carbonaceous materials not only are contributing the electrical conductivity but also increase their active sites on composite surfaces. The as-prepared nanocomposites are characterized by powder X-ray diffraction, Raman spectroscopy, FTIR, and BET analyses. The morphological features are visualized by FESEM and HRTEM images that have apparently showed the decoration of GMC composite by Ni(OH)2 nanoparticles. XPS spectra reveal the chemical bond formation and oxidation states of Ni 2p, C 1s, and O 1s energy levels. The maximum specific capacitance of 1663 F g−1 for the corresponding current density of 1 A g−1 is realized in the GMC-Ni(OH)2 nanocomposite-based electrode. In addition, the cyclic stability seems to be good with 95.7% retention even at 2000 charge-discharge cycles. The fabricated asymmetric supercapacitor device delivers a maximum cell voltage of 1.8 V with high energy density (32.85 Wh kg−1) and high power density (3196 W kg−1) at the current density of 4 A g−1. Thus, GMC-Ni(OH)2 nanocomposite is proven to be a promising candidate as active electrode material for high-performance supercapacitor device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10(12):4863–4868

    Article  CAS  PubMed  Google Scholar 

  2. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc 38(9):2520–2531

    Article  CAS  Google Scholar 

  3. Faraji S, Ani FN (2014) Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors—a review. J Power Sources 263:338–360

    Article  CAS  Google Scholar 

  4. Conway B, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66(1–2):1–14

    Article  CAS  Google Scholar 

  5. Hu C-C, Chang K-H, Lin M-C, Wu Y-T (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6(12):2690–2695

    Article  CAS  PubMed  Google Scholar 

  6. Zhu G, Li H, Deng L, Liu Z-H (2010) Low-temperature synthesis of δ-MnO2 with large surface area and its capacitance. Mater Lett 64(16):1763–1765

    Article  CAS  Google Scholar 

  7. Dubal DP, Dhawale DS, Salunkhe RR, Fulari VJ, Lokhande CD (2010) Chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. J Alloys Compd 497(1):166–170

    Article  CAS  Google Scholar 

  8. Liu T-C, Pell W, Conway B (1999) Stages in the development of thick cobalt oxide films exhibiting reversible redox behavior and pseudocapacitance. Electrochim Acta 44(17):2829–2842

    Article  CAS  Google Scholar 

  9. Gupta V, Gupta S, Miura N (2008) Al-substituted α-cobalt hydroxide synthesized by potentiostatic deposition method as an electrode material for redox-supercapacitors. J Power Sources 177(2):685–689

    Article  CAS  Google Scholar 

  10. Zhang M, Chen K, Chen X, Peng X, Sun X, Xue D (2015) Ethylenediamine-assisted crystallization of Fe2O3 microspindles with controllable size and their pseudocapacitance performance. CrystEngComm 17(7):1521–1525

    Article  CAS  Google Scholar 

  11. Shen B, Guo R, Lang J, Liu L, Liu L, Yan X (2016) A high-temperature flexible supercapacitor based on pseudocapacitive behavior of FeOOH in an ionic liquid electrolyte. J Mater Chem A 4(21):8316–8327

    Article  CAS  Google Scholar 

  12. Cao C-Y, Guo W, Cui Z-M, Song W-G, Cai W (2011) Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes. J Mater Chem 21(9):3204–3209

    Article  CAS  Google Scholar 

  13. Xiong X, Ding D, Chen D, Waller G, Bu Y, Wang Z, Liu M (2015) Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy 11:154–161

    Article  CAS  Google Scholar 

  14. Yang Y-Y, Hu Z-A, Zhang Z-Y, Zhang F-H, Zhang Y-J, Liang P-J, Zhang H-Y, Wu H-Y (2012) Reduced graphene oxide–nickel oxide composites with high electrochemical capacitive performance. Mater Chem Phys 133(1):363–368

    Article  CAS  Google Scholar 

  15. Vidhyadharan B, Misnon II, Aziz RA, Padmasree K, Yusoff MM, Jose R (2014) Superior supercapacitive performance in electrospun copper oxide nanowire electrodes. J Mater Chem A 2(18):6578–6588

    Article  CAS  Google Scholar 

  16. Pramanik A, Maiti S, Mahanty S (2015) Reduced graphene oxide anchored Cu(OH)2 as a high performance electrochemical supercapacitor. Dalton Trans 44(33):14604–14612

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Yuan G, Jiang Z, Yao Z, Yue M (2015) Preparation of Ni(OH)2-graphene sheet-carbon nanotube composite as electrode material for supercapacitors. J Alloys Compd 618:37–43

    Article  CAS  Google Scholar 

  18. Yuan C, Zhang X, Su L, Gao B, Shen L (2009) Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J Mater Chem 19(32):5772–5777

    Article  CAS  Google Scholar 

  19. Bi R-R, Wu X-L, Cao F-F, Jiang L-Y, Guo Y-G, Wan L-J (2010) Highly dispersed RuO2 nanoparticles on carbon nanotubes: facile synthesis and enhanced supercapacitance performance. J Phys Chem C 114(6):2448–2451

    Article  CAS  Google Scholar 

  20. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  PubMed  Google Scholar 

  21. Xia J, Chen F, Li J, Tao N (2009) Measurement of the quantum capacitance of graphene. Nat Nanotechnol 4(8):505–509

    Article  CAS  PubMed  Google Scholar 

  22. Rajendran R, Shrestha LK, Kumar RM, Jayavel R, Hill JP, Ariga K (2015) Composite nanoarchitectonics for ternary systems of reduced graphene oxide/carbon nanotubes/nickel oxide with enhanced electrochemical capacitor performance. J Inorg Organomet Polym Mater 25(2):267–274

    Article  CAS  Google Scholar 

  23. Tompsett GA, Conner WC, Yngvesson KS (2006) Microwave synthesis of nanoporous materials. ChemPhysChem 7(2):296–319

    Article  CAS  PubMed  Google Scholar 

  24. Conover W (2003) Introduction to green chemistry (Ryan, Mary Ann; Tinnesand, Michael). J Chem Educ 80(3):268

    Article  CAS  Google Scholar 

  25. Xu X, Yang W, Liu J, Lin L (2001) Synthesis of NaA zeolite membrane by microwave heating. Sep Purif Technol 25(1):241–249

    Article  CAS  Google Scholar 

  26. Hannus I, Kónya Z, Kollár T, Kiyozumi Y, Mizukami F, Lentz P, Nagy J Spectroscopic investigations of the decomposition of CCl2F2 on three different. In: Porous Materials in Environmentally Friendly Processes: Proceedings of the 1st International FEZA Conference, Eger, Hungary, 1–4 September, 1999, 1999. Elsevier, p 245

  27. Tsai T-G, Shih H-C, Liao S-J, K-j C (1998) Well-aligned SAPO-5 membrane: preparation and characterization. Microporous Mesoporous Mater 22(1):333–341

    Article  CAS  Google Scholar 

  28. Wang H, Zhang J-R, Zhu J-J (2001) A microwave assisted heating method for the rapid synthesis of sphalrite-type mercury sulfide nanocrystals with different sizes. J Cryst Growth 233(4):829–836

    Article  CAS  Google Scholar 

  29. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  30. Mai L-Q, Minhas-Khan A, Tian X, Hercule KM, Zhao Y-L, Lin X, Xu X (2013) Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat Commun 4(1):2923

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113(30):13103–13107

    Article  CAS  Google Scholar 

  32. Jin Z, Lomeda JR, Price BK, Lu W, Zhu Y, Tour JM (2009) Mechanically assisted exfoliation and functionalization of thermally converted graphene sheets. Chem Mater 21(14):3045–3047

    Article  CAS  Google Scholar 

  33. Kumar R, Singh RK, Dubey PK, Singh DP, Yadav RM (2015) Self-assembled hierarchical formation of conjugated 3D cobalt oxide nanobead–CNT–graphene nanostructure using microwaves for high-performance supercapacitor electrode. ACS Appl Mater Interfaces 7(27):15042–15051

    Article  CAS  PubMed  Google Scholar 

  34. Understanding Graphene via Raman Scattering. In: Graphene. https://doi.org/10.1002/9783527651122.ch2

  35. Bonhomme F, Lassègues JC, Servant L (2001) Raman spectroelectrochemistry of a carbon supercapacitor. J Electrochem Soc 148(11):E450–E458

    Article  CAS  Google Scholar 

  36. Devaraj S, Liu HY, Balaya P (2014) MnCO3: a novel electrode material for supercapacitors. J Mater Chem A 2(12):4276–4281

    Article  CAS  Google Scholar 

  37. Zhou M, Chai H, Jia D, Zhou W (2014) The glucose-assisted synthesis of a graphene nanosheet-NiO composite for high-performance supercapacitors. New J Chem 38(6):2320–2326

    Article  CAS  Google Scholar 

  38. Luo D, Zhang G, Liu J, Sun X (2011) Evaluation criteria for reduced graphene oxide. J Phys Chem C 115(23):11327–11335

    Article  CAS  Google Scholar 

  39. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107

    Article  CAS  Google Scholar 

  40. Li H, Yu M, Wang F, Liu P, Liang Y, Xiao J, Wang C, Tong Y, Yang G (2013) Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat Commun 4:1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee JW, Ahn T, Soundararajan D, Ko JM, Kim J-D (2011) Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior. ChemCommun 47(22):6305–6307

    CAS  Google Scholar 

  42. Kumar KA, Subalakshmi K, Senthilselvan J (2016) Effect of mixed valence state of titanium on reduced recombination for natural dye-sensitized solar cell applications. J Solid State Electrochem 20(7):1921–1932

    Article  CAS  Google Scholar 

  43. Xu Y, Huang X, Lin Z, Zhong X, Huang Y, Duan X (2013) One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res 6(1):65–76

    Article  CAS  Google Scholar 

  44. Wang H, Casalongue HS, Liang Y, Dai H (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132(21):7472–7477

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors NSP and RI are grateful to thank School of Physics, Alagappa University, Karaikudi, India, for providing XRD, Raman, and FTIR facilities to carry out the characterization. National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai, India, is highly acknowledged for extending the XPS facility for this work. Also, the author AP thank DST-FIST and DST-Nanomission for the instrumentation facility at the Department of Chemistry, Anna University, Chennai, India.

Funding

The authors KA and AP thank DST-SERB for financial support through (File No. PDF/2016/003878; Dt:23-06-2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ilangovan.

Electronic supplementary material

ESM 1

(DOC 1676 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palani, N.S., Kavitha, N.S., Venkatesh, K.S. et al. Effect of NiO/Ni(OH)2 nanostructures in graphene/CNT nanocomposites on their interfacial charge transport kinetics for high-performance supercapacitors. J Solid State Electrochem 22, 3273–3287 (2018). https://doi.org/10.1007/s10008-018-4032-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4032-x

Keywords

Navigation