Skip to main content

Advertisement

Log in

Electrochemical reduction of CO2 to useful fuel: recent advances and prospects

  • Review Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The continuous combustion of conventional fossil fuels leads to undesirable environmental consequences. Increasing CO2 emissions and depletion of fossil fuels are two major concerns in today’s society. To combat these problems, we need to find an alternative source of energy that meet the current demands and at the same time has minimal effect on the environment. Electrochemical reduction of CO2 (ERCO2) provides a two-way solution as it results in a net decrease in the amount of CO2 in the atmosphere by capturing CO2 from the surroundings and converting it into fuels that can be used to source energy. This review presents the recent trends in the electrochemical reduction of CO2 to generate green fuel with an emphasis on reactor configurations, electrocatalysts, and solid polymer electrolytes. The influence of various functionalized catalysts and surface structures on ERCO2 is reviewed. Finally, the future perspectives on the progress of electrochemical reduction of CO2 will be presented.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AEM:

Anion exchange membrane

CD:

Current density

CEM:

Cation exchange membrane

CNT:

Carbon nanotube

ERCO2 :

Electrochemical reduction of CO2

FE:

Faradic efficiency

GDL:

Gas diffusion layer

HER:

Hydrogen evolution reaction

MOF:

Metal–organic frameworks

MOP:

Metal–organic porous

NP:

Nanoparticles

PEI:

Polyethyleneimine

PVA:

Polyvinyl alcohol

SPE:

Solid polymer electrolyte

SPEEK:

Sulphonated poly(etheretherketone)

References

  1. Yang J, Hao Y, Feng C (2021) A race between economic growth and carbon emissions: what play important roles towards global low-carbon development? Energy Econ 100:105327

    Article  Google Scholar 

  2. Karayannis V, Charalampides G, Lakioti E (2014) Socio-economic aspects of CCS technologies. Procedia Econ Financ 14:295–302

    Article  Google Scholar 

  3. Global Energy Review: CO2 Emissions in 2019.

  4. Jin Y, Keeling RF, Rödenbeck C, Patra PK, Piper SC, Schwartzman A (2022) Impact of changing winds on the Mauna Loa CO2 seasonal cycle in relation to the Pacific decadal oscillation. J Geophys Res Atmos 127:e2021JD035892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eberle U, Von Helmolt R (2010) Sustainable transportation based on electric vehicle concepts: a brief overview. Energy Environ Sci 3:689–699

    Article  CAS  Google Scholar 

  6. Ohta K, Kawamoto M, Mizuno T, Lowy DA (1998) Electrochemical reduction of carbon dioxide in methanol at ambient temperature and pressure. J Appl Electrochem 28:717–724

    Article  CAS  Google Scholar 

  7. Gattrell M, Gupta N, Co A (2006) A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J Electroanal Chem 594:1–19

    Article  CAS  Google Scholar 

  8. Malik K, Singh S, Basu S, Verma A (2017) Electrochemical reduction of CO2 for synthesis of green fuel. Wiley Interdiscip Rev Energy Environ 6:e244

    Google Scholar 

  9. Wilcox J (2012) Carbon capture. Springer Science and Business Media, New York, pp 1–323

    Book  Google Scholar 

  10. Aeshala LM, Uppaluri R, Verma A (2014) Electrochemical conversion of CO2 to fuels: tuning of the reaction zone using suitable functional groups in a solid polymer electrolyte. Phys Chem Chem Phys 16:17588–17594

    Article  CAS  PubMed  Google Scholar 

  11. Innocent B, Liaigre D, Pasquier D, Ropital F, Léger JM, Kokoh KB (2009) Electro-reduction of carbon dioxide to formate on lead electrode in aqueous medium. J Appl Electrochem 39:227–232

    Article  CAS  Google Scholar 

  12. Delacourt C, Ridgway PL, Kerr JB, Newman J (2008) Design of an electrochemical cell making syngas (CO+H2) from CO2 and H2O reduction at room temperature. J Electrochem Soc 155:42–49

    Article  Google Scholar 

  13. Aeshala LM, Rahman SU, Verma A (2012) Effect of solid polymer electrolyte on electrochemical reduction of CO2. Sep Purif Technol 94:131–137

    Article  CAS  Google Scholar 

  14. Köleli F, Röpke T, Hamann CH (2004) The reduction of CO2 on polyaniline electrode in a membrane cell. Synth Met 140:65–68

    Article  Google Scholar 

  15. Li H, Oloman C (2005) The electro-reduction of carbon dioxide in a continuous reactor. J Appl Electrochem 35:955–965

    Article  CAS  Google Scholar 

  16. Li H, Oloman C (2006) Development of a continuous reactor for the electro-reduction of carbon dioxide to formate - Part 1: process variables. J Appl Electrochem 36:1105–1115

    Article  CAS  Google Scholar 

  17. Li H, Oloman C (2007) Development of a continuous reactor for the electro-reduction of carbon dioxide to formate - Part 2: scale-up. J Appl Electrochem 37:1107–1117

    Article  CAS  Google Scholar 

  18. Subramanian K, Asokan K, Jeevarathinam D, Chandrasekaran M (2007) Electrochemical membrane reactor for the reduction of carbondioxide to formate. J Appl Electrochem 37:255–260

    Article  CAS  Google Scholar 

  19. Senthil KP, Mohapatra M, Basu S (2022) The inchoate horizon of electrolyzer designs, membranes and catalysts towards highly efficient electrochemical reduction of CO2 to formic acid. RSC Adv. https://doi.org/10.1016/S0013-4686(02)00253-0

    Article  Google Scholar 

  20. Yamamoto T, Tryk DA, Fujishimal A, Ohata H (2002) Production of syngas plus oxygen from CO2 in a gas-diffusion electrode-based electrolytic cell. Electrochim Acta 47:3327–3334

    Article  CAS  Google Scholar 

  21. Chen Y, Kanan MW (2012) Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J Am Chem Soc 134:1986–1989

    Article  CAS  PubMed  Google Scholar 

  22. Liang S, Altaf N, Huang L, Gao Y, Wang Q (2020) Electrolytic cell design for electrochemical CO2 reduction. J CO2 Util 35:90–105

    Article  CAS  Google Scholar 

  23. Tsujiguchi T, Kawabe Y, Jeong S, Ohto T, Kukunuri S et al (2021) Acceleration of electrochemical CO2 reduction to formate at the Sn/Reduced graphene oxide interface. ACS Catal 11:3310–3318

    Article  CAS  Google Scholar 

  24. Kwon Y, Lee J (2010) Formic acid from carbon dioxide on nanolayered electrocatalyst. Electrocatalysis 1:108–115

    Article  CAS  Google Scholar 

  25. Whipple DT, Finke EC, Kenis PJA (2010) Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH. Electrochem solid-state lett 13:109–111

    Article  Google Scholar 

  26. Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 5:7050–7059

    Article  CAS  Google Scholar 

  27. Tornow CE, Thorson MR, Ma S, Gewirth AA, Kenis PJA (2012) Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO. J Am Chem Soc 134:19520–19523

    Article  CAS  PubMed  Google Scholar 

  28. Du D, Lan R, Humphreys J, Tao S (2017) Progress in inorganic cathode catalysts for electrochemical conversion of carbon dioxide into formate or formic acid. J Appl Electrochem 47:661–678

    Article  CAS  Google Scholar 

  29. Kumar B, Atla V, Brian JP, Kumari S, Nguyen TQ et al (2017) Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2 into HCOOH conversion. Angew Chem Int Ed 56:3645–3649

    Article  CAS  Google Scholar 

  30. Hernández S, Amin Farkhondehfal M, Sastre F, Makkee M, Saracco G, Russo N (2017) Syngas production from electrochemical reduction of CO2: current status and prospective implementation. Green Chem 19:2326–2346

    Article  Google Scholar 

  31. Dufek EJ, Lister TE, McIlwain ME (2011) Bench-scale electrochemical system for generation of CO and syn-gas. J Appl Electrochem 41:623–631

    Article  CAS  Google Scholar 

  32. Narayanan SR, Haines B, Soler J, Valdez TI (2011) Electrochemical conversion of carbon dioxide to formate in alkaline polymer electrolyte membrane cells. J Electrochem Soc 158:A167

    Article  CAS  Google Scholar 

  33. Hori Y, Murata A, Takahashi R (1989) Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J Chem Soc Faraday Trans 1 85:2309–2326

    Article  CAS  Google Scholar 

  34. Azuma M, Watanabe M (1990) Electrodes in low-temperature aqueous KHCO3 media. J Electrochem Soc 137:1772–1778

    Article  CAS  Google Scholar 

  35. Yano H, Tanaka T, Nakayama M, Ogura K (2004) Selective electrochemical reduction of CO2 to ethylene at a three-phase interface on copper(I) halide-confined Cu-mesh electrodes in acidic solutions of potassium halides. J Electroanal Chem 565:287–293

    Article  CAS  Google Scholar 

  36. Kaneco S, Katsumata H, Suzuki T, Ohta K (2006) Electrochemical reduction of carbon dioxide to ethylene at a copper electrode in methanol using potassium hydroxide and rubidium hydroxide supporting electrolytes. Electrochim Acta 51:3316–3321

    Article  CAS  Google Scholar 

  37. Zhao J, Xue S, Barber J, Zhou Y, Meng J, Ke X (2020) An overview of Cu-based heterogeneous electrocatalysts for CO2 reduction. J Mater Chem A 8:4700–4734

    Article  CAS  Google Scholar 

  38. Chen X, Chen J, Alghoraibi NM, Henckel DA, Zhang R et al (2021) Electrochemical CO2 to ethylene conversion on polyamine-incorporated Cu electrodes. Nat Catal 4:20–27

    Article  Google Scholar 

  39. Li X, Wang J, Lv X, Yang Y, Xu Y et al (2022) Hetero-interfaces on Cu electrode for enhanced electrochemical conversion of CO2 to multi-carbon products. Nanomicro Lett 14:134

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ikeda S, Ito T, Azuma K, Nishi N, Ito K, Noda H (1996) Electrochemical mass reduction of carbon dioxide using Cu-loaded gas diffusion electrodes II. Proposal of reaction mechanism. Denki Kagaku oyobi Kogyo Butsuri Kagaku 64:69–75

    Article  CAS  Google Scholar 

  41. Hori Y, Takahashi R, Yoshinami Y, Murata A (1997) Electrochemical reduction of CO at a copper electrode. J Phys Chem Lett B 101:7075–7081

    Article  CAS  Google Scholar 

  42. Xie MS, Xia BY, Li Y, Yan Y, Yang Y et al (2016) Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ Sci 9:1687–1695

    Article  CAS  Google Scholar 

  43. Li CW, Ciston J, Kanan MW (2014) Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508:504–507

    Article  CAS  PubMed  Google Scholar 

  44. Qiao J, Jiang P, Liu J, Zhang J (2014) Formation of Cu nanostructured electrode surfaces by an annealing-electroreduction procedure to achieve high-efficiency CO2 electroreduction. Electrochem commun 38:8–11

    Article  CAS  Google Scholar 

  45. Alves DCB, Silva R, Voiry D, Asefa T, Chhowalla M (2015) Copper nanoparticles stabilized by reduced graphene oxide for CO2 reduction reaction. Mater Renew Sustain Energy 4:1–7

    Article  Google Scholar 

  46. Ren D, Wong NT, Handoko AD, Huang Y, Yeo BS (2016) Mechanistic insights into the enhanced activity and stability of agglomerated Cu nanocrystals for the electrochemical reduction of carbon dioxide to n-propanol. J Phys Chem Lett 7:20–24

    Article  CAS  PubMed  Google Scholar 

  47. Clark EL, Hahn C, Jaramillo TF, Bell AT (2017) Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J Am Chem Soc 139:15848–15857

    Article  CAS  PubMed  Google Scholar 

  48. Chen X, Henckel DA, Nwabara UO, Li Y, Frenkel AI et al (2020) Controlling speciation during CO2 reduction on Cu-alloy electrodes. ACS Catal 10:672–682

    Article  CAS  Google Scholar 

  49. Zeng J, Fiorentin MR, Fontana M, Castellino M, Risplendi F et al (2022) Novel Insights into Sb-Cu catalysts for electrochemical reduction of CO2. Appl Catal B Environ 306:121089

    Article  CAS  Google Scholar 

  50. Reller C, Krause R, Volkova E, Schmid B, Neubauer S et al (2017) Selective electroreduction of CO2 toward ethylene on nano dendritic copper catalysts at high current density. Adv Energy Mater 7:1–8

    Google Scholar 

  51. Dinh CT, Burdyny T, Kibria G, Seifitokaldani A, Gabardo CM et al (2018) CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360:783–787

    Article  CAS  PubMed  Google Scholar 

  52. Uemoto N, Furukawa M, Tateishi I, Katsumata H, Kaneco S (2019) Electrochemical carbon dioxide reduction in methanol at Cu and Cu2O-deposited carbon black electrodes. Chem Eng 3:1–10

    Google Scholar 

  53. Ahn S, Klyukin K, Wakeham RJ, Rudd JA, Lewis AR et al (2018) Poly-amide modified copper foam electrodes for enhanced electrochemical reduction of carbon dioxide. ACS Catal 8:4132–4142

    Article  CAS  Google Scholar 

  54. Qin T, Qian Y, Zhang F, Lin BL (2019) Cloride-derived copper electrode for efficient electrochemical reduction of CO2 to ethylene. Chinese J Chem 30:314–318

    CAS  Google Scholar 

  55. Le M, Ren M, Zhang Z, Sprunger PT, Kurtz RL, Flake JC (2011) Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J Electrochem Soc 158:45–49

    Article  Google Scholar 

  56. Li CW, Kanan MW (2012) CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc 134:7231–7234

    Article  CAS  PubMed  Google Scholar 

  57. Yadav VSK, Purkait MK (2015) Electrochemical studies for CO2 reduction using synthesized Co3O4 (anode) and Cu2O (cathode) as electrocatalysts. Energ Fuel 29:6670–6677

    Article  CAS  Google Scholar 

  58. Lum Y, Yue B, Lobaccaro P, Bell AT, Ager JW (2017) Optimizing C-C coupling on oxide-derived copper catalysts for electrochemical CO2 reduction. J Phys Chem C 121:14191–14203

    Article  CAS  Google Scholar 

  59. Sheelam A, Muneeb A, Talukdar B, Ravindranath R, Huang S-J et al (2020) Flexible and free-standing polyvinyl alcohol-reduced graphene oxide-Cu2O/CuO thin films for electrochemical reduction of carbon dioxide. J Appl Electrochem 50:979–991

    Article  CAS  Google Scholar 

  60. Kim D, Kley CS, Li Y, Yang P (2017) Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc Natl Acad Sci USA 114:10560–10565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jiwanti PK, Natsui K, Nakata K, Einaga Y (2018) The electrochemical production of C2/C3 species from carbon dioxide on copper-modified boron-doped diamond electrodes. Electrochim Acta 266:414–419

    Article  CAS  Google Scholar 

  62. Hossain MN, Wen J, Chen A (2017) Unique copper and reduced graphene oxide nanocomposite toward the efficient electrochemical reduction of carbon dioxide. Sci Rep 7:1–10

    Article  Google Scholar 

  63. Hoffman ZB, Gray TS, Moraveck KB, Gunnoe TB, Zangari G (2017) Electrochemical reduction of carbon dioxide to syngas and formate at dendritic copper-Indium electrocatalysts. ACS Catal 7:5381–5390

    Article  CAS  Google Scholar 

  64. Kim S, Dong WJ, Gim S, Sohn W, Park JY et al (2017) Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate. Nano Energy 39:44–52

    Article  CAS  Google Scholar 

  65. Lv W, Zhou J, Bei J, Zhang R, Wang L et al (2017) Electrodeposition of nano-sized bismuth on copper foil as electrocatalyst for reduction of CO2 to formate. Appl Surf Sci 393:191–196

    Article  CAS  Google Scholar 

  66. Jia L, Yang H, Deng J, Chen J, Zhou Y et al (2019) Copper-bismuth Bimetallic microspheres for selective electrocatalytic reduction of CO2 to formate. Chinese J Chem 37:497–500

    Article  CAS  Google Scholar 

  67. Yang D, Zhu Q, Chen C, Liu H, Liu Z et al (2019) Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. Nat Commun 10:1–9

    Google Scholar 

  68. Chen Z, Wang N, Yao S, Liu L (2017) The flaky Cd film on Cu plate substrate: An active and efficient electrode for electrochemical reduction of CO2 to formate. J CO2 Util 22:191–196

    Article  CAS  Google Scholar 

  69. Wang C, Cao M, Jiang X, Wang M, Shen Y (2018) A catalyst based on copper-cadmium bimetal for electrochemical reduction of CO2 to CO with high faradaic efficiency. Electrochim Acta 271:544–550

    Article  CAS  Google Scholar 

  70. Lu L, Sun X, Ma J, Yang D, Wu H et al (2018) Highly efficient electroreduction of CO2 to methanol on palladium–copper bimetallic aerogels. Angew Chem Int Ed 57:14149–14153

    Article  CAS  Google Scholar 

  71. Hoffman ZB, Gray TS, Xu Y, Lin Q, Gunnoe TB, Zangari G (2019) High selectivity towards formate production by electrochemical reduction of carbon dioxide at copper–bismuth dendrites. Chemsuschem 12:231–239

    Article  CAS  PubMed  Google Scholar 

  72. Hirunsit P (2013) Electroreduction of carbon dioxide to methane on copper, copper-silver, and copper-gold catalysts: A DFT study. J Phys Chem C 117:8262–8268

    Article  CAS  Google Scholar 

  73. Singh S, Phukan B, Mukherjee C, Verma A (2015) Salen ligand complexes as electrocatalysts for direct electrochemical reduction of gaseous carbon dioxide to value added products. RSC Adv 5:3581–3589

    Article  CAS  Google Scholar 

  74. Schouten KJP, Kwon Y, Van Der Ham CJM, Qin Z, Koper MTM (2011) A new mechanism for the selectivity to C1and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem Sci 2:1902–1909

    Article  CAS  Google Scholar 

  75. Chang TY, Liang RM, Wu PW, Chen JY, Hsieh YC (2009) Electrochemical reduction of CO2 by Cu2O-catalyzed carbon clothes. Mater Lett 63:1001–1003

    Article  CAS  Google Scholar 

  76. Mistry H, Reske R, Zeng Z, Zhao ZJ, Greeley J et al (2014) Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J Am Chem Soc 136:16473–16476

    Article  CAS  PubMed  Google Scholar 

  77. Fang Y, Flake JC (2017) Electrochemical reduction of CO2 at functionalized Au electrodes. J Am Chem Soc 139:3399–3405

    Article  CAS  PubMed  Google Scholar 

  78. Dunwell M, Lu Q, Heyes JM, Rosen J, Chen JG et al (2017) The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J Am Chem Soc 139:3774–3783

    Article  CAS  PubMed  Google Scholar 

  79. Sun C, Rotundo L, Garino C, Nencini L, Yoon SS et al (2017) Electrochemical CO2 reduction at glassy carbon electrodes functionalized by MnI and ReI organometallic complexes. ChemPhysChem 18:3219–3229

    Article  CAS  PubMed  Google Scholar 

  80. Huang H, Jia H, Liu Z, Gao P, Zhao J et al (2017) Understanding of strain effects in the electrochemical reduction of CO2: Using Pd nanostructures as an ideal platform. Angew Chem Int Ed 56:3594–3598

    Article  CAS  Google Scholar 

  81. Cai F, Gao D, Zhou H, Wang G, He T et al (2017) Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction. Chem Sci 8:2569–2573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhou F, Li H, Fournier M, MacFarlane DR (2017) Electrocatalytic CO2 reduction to formate at low overpotentials on electrodeposited Pd films: Stabilized performance by suppression of CO formation. Chemsuschem 10:1509–1516

    Article  CAS  PubMed  Google Scholar 

  83. Zhang W, Qin Q, Dai L, Qin R, Zhao X et al (2018) Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd–O–Sn interfaces. Angew Chem Int Ed 57:9475–9479

    Article  CAS  Google Scholar 

  84. Liu S, Tao H, Zeng L, Liu Q, Xu Z et al (2017) Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. J Am Chem Soc 139:2160–2163

    Article  CAS  PubMed  Google Scholar 

  85. Daiyan R, Lu X, Ng YH, Amal R (2017) Highly selective conversion of CO2 to CO achieved by a three-dimensional porous silver electrocatalyst. ChemistrySelect 2:879–884

    Article  CAS  Google Scholar 

  86. Peng X, Karakalos SG, Mustain WE (2018) Preferentially oriented Ag nanocrystals with extremely high activity and Faradaic efficiency for CO2 electrochemical reduction to CO. ACS Appl Mater Interfaces 10:1734–1742

    Article  CAS  PubMed  Google Scholar 

  87. Ma M, Liu K, Shen J, Kas R, Smith WA (2018) In-situ fabrication and reactivation of highly selective and stable Ag catalysts for electrochemical CO2 conversion. ACS Energy Lett 3:1301–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xi W, Ma R, Wang H, Gao Z, Zhang W, Zhao Y (2018) Ultrathin Ag nanowires electrode for electrochemical syngas production from carbon dioxide. ACS Sustain Chem Eng 6:7687–7694

    Article  CAS  Google Scholar 

  89. Lv K, Fan Y, Zhu Y, Yuan Y, Wang J et al (2018) Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol. J Mater Chem A 6:5025–5031

    Article  CAS  Google Scholar 

  90. Dong WJ, Yoo CJ, Lee JL (2017) Monolithic nanoporous in-Sn alloy for electrochemical reduction of carbon dioxide. ACS Appl Mater Interfaces 9:43575–43582

    Article  CAS  PubMed  Google Scholar 

  91. Lai Q, Yang N, Yuan G (2017) Electrochemistry communications highly efficient In–Sn alloy catalysts for electrochemical reduction of CO2 to formate. Electrochem commun 83:24–27

    Article  CAS  Google Scholar 

  92. Li F, Zhang H, Ji S, Liu W, Zhang D et al (2019) High performance Sn-In cathode for the electrochemical reduction of carbon dioxide to formic acid. Int J Electrochem Sci 14:4161–4172

    Article  CAS  Google Scholar 

  93. Natsui K, Iwakawa H, Ikemiya N, Nakata K, Einaga Y (2018) Stable and highly efficient electrochemical production of formic acid from carbon dioxide using diamond electrodes. Angew Chem Int Ed 57:2639–2643

    Article  CAS  Google Scholar 

  94. Romero Cuellar NS, Wiesner-Fleischer K, Hinrichsen O, Fleischer M (2018) Electrochemical reduction of CO2 in water-based electrolytes KHCO3 and K2SO4 using boron doped diamond electrodes. ChemistrySelect 3:3591–3595

    Article  CAS  Google Scholar 

  95. Jiwanti PK, Natsui K, Einaga Y (2019) The utilization of boron-doped diamond electrodes for the electrochemical reduction of CO2: Toward the production compounds with a high number of carbon atoms. Electrochem 87:109–113

    Article  CAS  Google Scholar 

  96. Wen G, Lee DU, Ren B, Hassan FM, Jiang G et al (2018) Orbital interactions in Bi-Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production. Adv Energy Mater 8:1–9

    Google Scholar 

  97. Lee CW, Hong JS, Yang KD, Jin K, Lee JH et al (2018) Selective electrochemical production of formate from carbon dioxide with bismuth-based catalysts in an aqueous electrolyte. ACS Catal 8:931–937

    Article  CAS  Google Scholar 

  98. Su P, Xu W, Qiu Y, Zhang T, Li X, Zhang H (2018) Ultrathin bismuth nanosheets as a highly efficient CO2 reduction electrocatalyst. Chemsuschem 11:848–853

    Article  CAS  PubMed  Google Scholar 

  99. Zhang Y, Li F, Zhang X, Williams T, Easton CD et al (2018) Electrochemical reduction of CO2 on defect-rich Bi derived from Bi2S3 with enhanced formate selectivity. J Mater Chem A 6:4714–4720

    Article  CAS  Google Scholar 

  100. Mizuno T, Naitoh A, Ohta K (1995) Electrochemical reduction of CO2 in methanol at −30°C. J Electroanal Chem 391:199–201

    Article  Google Scholar 

  101. Summers P, Frese W (1986) The electrochemical reduction of aqueous carbon dioxide to methanol at molybdenum electrodes with low overpotentials. J electroanal chem interfacial electrochem 205:219–232

    Article  CAS  Google Scholar 

  102. Ogura K, Yoshida I (1988) Electrocatalytic reduction of CO2 to methanol. Part 9: Mediation with metal porphyrins. J Mol Catal 47:51–57

    Article  CAS  Google Scholar 

  103. Reda T, Plugge CM, Abram NJ, Hirst J (2008) Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc Natl Acad Sci USA 105:10654–10658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hawecker J, Lehn J-M, Ziessel R (1983) Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3 X or Ru(bipy)32+–Co2+ combinations as homogeneous catalysts. J Chem Soc Chem Commun 9:536–538

    Article  Google Scholar 

  105. Hawecker J, Lehn J-m, Ziessel R (1986) Photochemical and electrochemical reduction of carbon dioxide to carbon monoxide mediated by (2,2′-bipyridine)tricarbonylchlororhenium(I) and related complexes as homogeneous catalysts. Helv Chim Acta. https://doi.org/10.1002/hlca.19860690824

    Article  CAS  Google Scholar 

  106. Cecchet F, Alebbi M, Bignozzi CA, Paolucci F (2006) Efficiency enhancement of the electrocatalytic reduction of CO2: fac-[Re(v-bpy)(CO)3Cl] electropolymerized onto mesoporous TiO2 electrode. Inorganica Chim Acta 359:3871–3874

    Article  CAS  Google Scholar 

  107. Smieja JM, Sampson MD, Grice KA, Benson EE, Froehlich JD, Kubiak CP (2013) Manganese as a substitute for rhenium in CO2 reduction catalysts: the importance of acids. Inorg Chem 52:2484–2491

    Article  CAS  PubMed  Google Scholar 

  108. Gangeri M, Perathoner S, Caudo S, Centi G, Amadou J et al (2009) Fe and Pt carbon nanotubes for the electrocatalytic conversion of carbon dioxide to oxygenates. Catal Today 143:57–63

    Article  CAS  Google Scholar 

  109. Jang BWL, Gläser R, Dong M, Liu CJ (2010) Fuels of the future. Energy Environ Sci 3:253

    Article  Google Scholar 

  110. Arrigo R, Schuster ME, Wrabetz S, Girgsdies F, Tessonnier JP et al (2012) New insights from microcalorimetry on the FeOx/CNT-based electrocatalysts active in the conversion of CO2 to fuels. Chemsuschem 5:577–586

    Article  CAS  PubMed  Google Scholar 

  111. Sonoyama N, Kirii M, Sakata T (1999) Electrochemical reduction of CO2 at metal-porphyrin supported gas diffusion electrodes under high pressure CO2. Electrochem commun 1:213–216

    Article  CAS  Google Scholar 

  112. Hara K, Kudo A, Sakata T (1997) Electrochemical CO2 reduction on a glassy carbon electrode under high pressure. J Electroanal Chem 421:1–4

    Article  CAS  Google Scholar 

  113. Wu Y, Kamiya K, Hashimoto T, Sugimoto R, Harada T et al (2020) Electrochemical CO2 reduction using gas diffusion electrode loading Ni-doped covalent triazine frameworks in acidic electrolytes. Electrochem 88:359–364

    Article  CAS  Google Scholar 

  114. Eggins BR, McNeill J (1983) Electrode Materials in Different Solvents. J Electroanal Chem Interfacial Electrochem 148:17–24

    Article  CAS  Google Scholar 

  115. Nikolic BZ, Huang H, Gervasio D, Lin A, Fierro C et al (1990) Electroreduction of carbon dioxide on platinum single crystal electrodes: electrochemical and in situ FTIR studies. J Electroanal Chem 295:415–423

    Article  CAS  Google Scholar 

  116. Hara K, Kudo A, Sakata T (1995) Electrochemical reduction of carbon dioxide under high pressure on various electrodes in an aqueous electrolyte. J Electroanal Chem 391:141–147

    Article  Google Scholar 

  117. Brisard GM, Camargo APM, Nart FC, Iwasita T (2001) On-line mass spectrometry investigation of the reduction of carbon dioxide in acidic media on polycrystalline Pt. Electrochem commun 3:603–607

    Article  CAS  Google Scholar 

  118. McKee DW (1967) Interaction of hydrogen and carbon monoxide on platinum group metals. J Catal 8:240–249

    Article  CAS  Google Scholar 

  119. Spichiger-Ulmann M, Augustynski J (1985) Electrochemical reduction of bicarbonate ions at a bright palladium cathode. J Chem Soc Faraday Trans 1(81):713–716

    Article  Google Scholar 

  120. Nakagawa S, Kudo A, Azuma M, Sakata T (1991) Effect of pressure on the electrochemical reduction of CO2 on Group VIII metal electrodes. J Electroanal Chem 308:339–343

    Article  CAS  Google Scholar 

  121. Ohkawa K, Noguchi Y, Nakayama S, Hashimoto K, Fujishima A (1994) Electrochemical reduction of carbon dioxide on hydrogen-storing materials: Part 4. Electrochemical behavior of the Pd electrode in aqueous and nonaqueous electrolyte. J Electroanal Chem 369:247–250

    Article  CAS  Google Scholar 

  122. Wang XY, Liu SQ, Huang KL, Feng QJ, Ye DL et al (2010) Fixation of CO2 by electrocatalytic reduction to synthesis of dimethyl carbonate in ionic liquid using effective silver-coated nanoporous copper composites. Chinese J Chem 21:987–990

    CAS  Google Scholar 

  123. Stevens GB, Reda T, Raguse B (2002) Energy storage by the electrochemical reduction of CO2 to CO at a porous Au film. J Electroanal Chem 526:125–133

    Article  CAS  Google Scholar 

  124. Kauffman DR, Alfonso D, Matranga C, Qian H, Jin R (2012) Experimental and computational investigation of Au25 clusters and CO2: a unique interaction and enhanced electrocatalytic activity. J Am Chem Soc 134:10237–10243

    Article  CAS  PubMed  Google Scholar 

  125. Noda H, Ikeda S, Oda Y, Imai K, Maeda M, Ito K (1990) Electrochemical reduction of carbon dioxide at various metal electrodes in aqueous potassium hydrogen carbonate solution. Bull Chem Soc Jpn 63:2459–2462

    Article  CAS  Google Scholar 

  126. Takatsuji Y, Morimoto M, Nakatsuru Y, Haruyama T (2022) Anodized Zn electrode for formate selectivity during the electrochemical reduction of CO2 at low applied potential. Electrochem commun 138:107281

    Article  CAS  Google Scholar 

  127. Shibata M (1998) Electrochemical synthesis of urea at gas-diffusion electrodes. J Electrochem Soc 145:2348

    Article  CAS  Google Scholar 

  128. Xiao J, Liu S, Sui P-F, Xu C, Gong L et al (2022) In-situ generated hydroxides realize near-unity CO selectivity for electrochemical CO2 reduction. Chem Eng J 433:133785

    Article  CAS  Google Scholar 

  129. Eneau-Innocent B, Pasquier D, Ropital F, Léger JM, Kokoh KB (2010) Electroreduction of carbon dioxide at a lead electrode in propylene carbonate: a spectroscopic study. Appl Catal B Environ 98:65–71

    Article  CAS  Google Scholar 

  130. Paik W, Andersen TN, Eyring H (1969) Kinetic studies of the electrolytic reduction of carbon dioxide on the mercury electrode. Electrochim Acta 14:1217–1232

    Article  CAS  Google Scholar 

  131. Sen S, Brown SM, Leonard M, Brushett FR (2019) Electroreduction of carbon dioxide to formate at high current densities using tin and tin oxide gas diffusion electrodes. J Appl Electrochem 49:917–928

    Article  CAS  Google Scholar 

  132. Barton EE, Rampulla DM, Bocarsly AB (2008) Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J Am Chem Soc 130:6342–6344

    Article  CAS  PubMed  Google Scholar 

  133. Kapusta S, Hackerman N (1983) The electroreduction of carbon dioxide and formic acid on tin and indium electrodes. J Electrochem Soc 130:607–613

    Article  CAS  Google Scholar 

  134. Kaneco S, Iiba K, Katsumata H, Suzuki T, Ohta K (2007) Effect of sodium cation on the electrochemical reduction of CO2 at a copper electrode in methanol. J Solid State Electrochem 11:490–495

    Article  CAS  Google Scholar 

  135. Kaneco S, Iiba K, Ohta K, Mizuno T (1999) Electrochemical reduction of carbon dioxide on copper in methanol with various potassium supporting electrolytes at low temperature. J Solid State Electrochem 3:424–428

    Article  CAS  Google Scholar 

  136. Aydin R, Köleli F (2004) Electrocatalytic conversion of CO2 on a polypyrrole electrode under high pressure in methanol. Synth Met 144:75–80

    Article  CAS  Google Scholar 

  137. Smith RDL, Pickup PG (2010) Nitrogen-rich polymers for the electrocatalytic reduction of CO2. Electrochem Commun 12:1749–1751

    Article  CAS  Google Scholar 

  138. Seshadri G, Lin C, Bocarsly AB (1994) A new homogeneous electrocatalyst for the reduction of carbon dioxide to methanol at low overpotential. J Electroanal Chem 372:145–150

    Article  CAS  Google Scholar 

  139. Barton Cole E, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: Kinetic, mechanistic and structural insights. J Am Chem Soc 132:11539–11551

    Article  CAS  Google Scholar 

  140. Bocarsly AB, Gibson QD, Morris AJ, L’Esperance RP, Detweiler ZM et al (2012) Comparative study of imidazole and pyridine catalyzed reduction of carbon dioxide at illuminated iron pyrite electrodes. ACS Catal 2:1684–1692

    Article  CAS  Google Scholar 

  141. Jiménez C, García J, Camarillo R, Martínez F, Rincón J (2017) Electrochemical CO2 reduction to fuels using Pt/CNT catalysts synthesized in supercritical medium. Energy Fuel 31:3038–3046

    Article  Google Scholar 

  142. Feaster JT, Shi C, Cave ER, Hatsukade T, Abram DN et al (2017) Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal 7:4822–4827

    Article  CAS  Google Scholar 

  143. Kim YE, Yun HS, Jeong SK, Yoon YI, Nam SC, Park KT (2017) Electrocatalytic stability of tin cathode for electroreduction of CO2 to formate in aqueous solution. J Nanosci Nanotechnol 18:1266–1269

    Article  Google Scholar 

  144. Del Castillo A, Alvarez-Guerra M, Solla-Gullón J, Sáez A, Montiel V, Irabien A (2017) Sn nanoparticles on gas diffusion electrodes: Synthesis, characterization and use for continuous CO2 electroreduction to formate. J CO2 Util 18:222–228

    Article  Google Scholar 

  145. Zhao Y, Liang J, Wang C, Ma J, Wallace GG (2018) Tunable and efficient tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide. Adv Energy Mater 8:1–9

    Article  Google Scholar 

  146. Lee CW, Cho NH, Yang KD, Nam KT (2017) Reaction mechanisms of the electrochemical conversion of carbon dioxide to formic acid on tin oxide electrodes. ChemElectroChem 4:2130–2136

    Article  CAS  Google Scholar 

  147. Li Q, Fu J, Zhu W, Chen Z, Shen B et al (2017) Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J Am Chem Soc 139:4290–4293

    Article  CAS  PubMed  Google Scholar 

  148. Sun X, Lu L, Zhu Q, Wu C, Yang D et al (2018) MoP nanoparticles supported on indium-doped porous carbon: Outstanding catalysts for highly efficient CO2 electroreduction. Angew Chem Int Ed 57:2427–2431

    Article  CAS  Google Scholar 

  149. Kumar A, Aeshala LM (2021) Imidazolium functionalized polymers for effective electrochemical reduction of CO2. J Polym Eng 41:211–217

    Article  CAS  Google Scholar 

  150. Zhang J, Luo W, Züttel A (2020) Crossover of liquid products from electrochemical CO2 reduction through gas diffusion electrode and anion exchange membrane. J Catal 385:140–145

    Article  CAS  Google Scholar 

  151. Kaczur JJ, Yang H, Liu Z, Sajjad SD, Masel RI (2018) Carbon dioxide and water electrolysis using new alkaline stable anion membranes. Front Chem 6:1–16

    Article  Google Scholar 

  152. Luc W, Rosen J, Jiao F (2017) An Ir-based anode for a practical CO2 electrolyzer. Catal Today 288:79–84

    Article  CAS  Google Scholar 

  153. Zhang S, Kang P, Meyer TJ (2014) Nanostructured Tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J Am Chem Soc 136:1734–1737

    Article  CAS  PubMed  Google Scholar 

  154. Lv W, Zhang R, Gao P, Lei L (2014) Studies on the faradaic efficiency for electrochemical reduction of carbon dioxide to formate on tin electrode. J Power Sources 253:276–281

    Article  CAS  Google Scholar 

  155. Prakash GKS, Viva FA, Olah GA (2013) Electrochemical reduction of CO2 over Sn-Nafion® coated electrode for a fuel-cell-like device. J Power Sources 223:68–73

    Article  CAS  Google Scholar 

  156. Senthil Kumar R, Senthil Kumar S, Anbu Kulandainathan M (2012) Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst. Electrochem Commun 25:70–73

    Article  CAS  Google Scholar 

  157. Alvarez-Guerra M, Quintanilla S, Irabien A (2012) Conversion of carbon dioxide into formate using a continuous electrochemical reduction process in a lead cathode. Chem Eng J 207–208:278–284

    Article  Google Scholar 

  158. Le M, Ren M, Zhang Z, Sprunger PT, Kurtz RL, Flake JC (2011) Electrochemical Reduction of CO2 to CH3OH at Copper Oxide Surfaces. J Electrochem Soc 158:E45–E49

    Article  CAS  Google Scholar 

  159. Gonçalves MR, Gomes A, Condeço J, Fernandes R, Pardal T et al (2010) Selective electrochemical conversion of CO2 to C2 hydrocarbons. Energy Convers Manag 51:30–32

    Article  Google Scholar 

  160. Ohya S, Kaneco S, Katsumata H, Suzuki T, Ohta K (2009) Electrochemical reduction of CO2 in methanol with aid of CuO and Cu2O. Catal Today 148:329–334

    Article  CAS  Google Scholar 

  161. Li H, Oloman C (2007) Development of a continuous reactor for the electro-reduction of carbon dioxide to formate – Part 2: Scale-up. J Appl Electrochem 37:1107–1117

    Article  CAS  Google Scholar 

  162. Akahori Y, Iwanaga N, Kato Y, Hamamoto O, Ishii M (2004) New electrochemical process for CO2 reduction to from formic acid from combustion flue gases. Electrochemistry 72:266–270

    Article  CAS  Google Scholar 

  163. Cook RL, MacDuff RC, Sammells AF (1988) Ambient temperature gas phase CO2 reduction to hydrocarbons at solid polymer electrolyte cells. J Electrochem Soc 135:1470–1471

    Article  CAS  Google Scholar 

  164. Komatsu S, Tanaka M, Okumura A, Kungi A (1995) Preparation of cu-solid polymer electrolyte composite electrodes and application to gas-phase electrochemical reduction of CO2. Electrochim Acta 40:745–753

    Article  CAS  Google Scholar 

  165. Nishimura Y, Yoshida D, Mizuhata M, Asaka K, Oguro K, Takenaka H (1995) Solid Polymer Electrolyte Co2 Reduction. Energy Convers Manage 36:629–632

    Article  CAS  Google Scholar 

  166. Qin B, Li Y, Fu H, Wang H, Chen S et al (2018) Electrochemical reduction of CO2 into tunable syngas production by regulating the crystal facets of Earth-abundant Zn catalyst. ACS Appl Mater Interfaces 10:20530–20539

    Article  CAS  PubMed  Google Scholar 

  167. Wang Y, Hou P, Wang Z, Kang P (2017) Zinc imidazolate metal–organic frameworks (ZIF-8) for electrochemical reduction of CO2 to CO. ChemPhysChem 18:3142–3147

    Article  CAS  PubMed  Google Scholar 

  168. Kornienko N, Zhao Y, Kley CS, Zhu C, Kim D et al (2015) Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J Am Chem Soc 137:14129–14135

    Article  CAS  PubMed  Google Scholar 

  169. Maihom T, Wannakao S, Boekfa B, Limtrakul J (2013) Production of formic acid via hydrogenation of CO2 over a copper-alkoxide-functionalized MOF: a mechanistic study. J Phys Chem C 117:17650–17658

    Article  CAS  Google Scholar 

  170. Albo J, Vallejo D, Beobide G, Castillo O, Castaño P, Irabien A (2017) Copper-based metal-organic porous materials for CO2 electrocatalytic reduction to alcohols. Chemsuschem 10:1100–1109

    Article  CAS  PubMed  Google Scholar 

  171. Qiu YL, Zhong HX, Zhang TT, Xu WB, Su PP et al (2018) Selective electrochemical reduction of carbon dioxide using Cu based metal organic framework for CO2 capture. ACS Appl Mater Interfaces 10:2480–2489

    Article  CAS  PubMed  Google Scholar 

  172. Kim MK, Kim HJ, Lim H, Kwon Y, Jeong HM (2019) Metal organic framework-mediated strategy for enhanced methane production on copper nanoparticles in electrochemical CO2 reduction. Electrochim Acta 306:28–34

    Article  CAS  Google Scholar 

  173. Cindrella L, Kannan AM, Lin JF, Saminathan K, Ho Y et al (2009) Gas diffusion layer for proton exchange membrane fuel cells-A review. J Power Sources 194:146–160

    Article  CAS  Google Scholar 

  174. Bui JC, Kim C, King AJ, Romiluyi O, Kusoglu A et al (2022) Engineering catalyst–electrolyte microenvironments to optimize the activity and selectivity for the electrochemical reduction of CO2 on Cu and Ag. Acc Chem Res 55:484–494

    Article  CAS  PubMed  Google Scholar 

  175. Hori Y, Ito H, Okano K, Nagasu K, Sato S (2003) Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide. Electrochim Acta 48:2651–2657

    Article  CAS  Google Scholar 

  176. Aeshala LM, Uppaluri RG, Verma A (2013) Effect of cationic and anionic solid polymer electrolyte on direct electrochemical reduction of gaseous CO2 to fuel. J CO2 Util 4:49–55

    Article  Google Scholar 

  177. Fan M, Bai Z, Zhang Q, Ma C, Zhou XD, Qiao J (2014) Aqueous CO2 reduction on morphology controlled CuxO nanocatalysts at low overpotential. RSC Adv 4:44583–44591

    Article  CAS  Google Scholar 

  178. Christophe J, Doneux T, Buess-Herman C (2012) Electroreduction of carbon dioxide on copper-based electrodes: activity of copper single crystals and copper-gold alloys. Electrocatalysis 3:139–146

    Article  CAS  Google Scholar 

  179. Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen BA et al (2013) Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat Commun 4:1–8

    Article  Google Scholar 

  180. Reske R, Mistry H, Behafarid F, Roldan Cuenya B, Strasser P (2014) Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J Am Chem Soc 136:6978–6986

    Article  CAS  PubMed  Google Scholar 

  181. Medina-Ramos J, Dimeglio JL, Rosenthal J (2014) Efficient reduction of CO2 to CO with high current density using in situ or ex situ prepared bi-based materials. J Am Chem Soc 136:8361–8367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Tabassum H, Yang X, Zou R, Wu G (2022) Surface engineering of Cu catalysts for electrochemical reduction of CO2 to value-added multi-carbon products. Chem Catalysis 2:1561–1593

    Article  CAS  Google Scholar 

  183. Kim JJ, Summers DP, Frese KW (1988) Reduction of CO2 and CO to methane on Cu foil electrodes. J Electroanal Chem 245:223–244

    Article  CAS  Google Scholar 

  184. Lee J, Tak Y (2001) Electrocatalytic activity of Cu electrode in electroreduction of CO2. Electrochim Acta 46:3015–3022

    Article  CAS  Google Scholar 

  185. Keerthiga G, Chetty R (2017) Electrochemical reduction of carbon dioxide on zinc-modified copper electrodes. J Electrochem Soc 164:H164–H169

    Article  CAS  Google Scholar 

  186. MacHunda RL, Lee J, Lee J (2010) Microstructural surface changes of electrodeposited Pb on gas diffusion electrode during electroreduction of gas-phase CO2. Surf Interface Anal 42:564–567

    Article  CAS  Google Scholar 

  187. Luc W, Collins C, Wang S, Xin H, He K et al (2017) Ag-sn bimetallic catalyst with a core-shell structure for CO2 reduction. J Am Chem Soc 139:1885–1893

    Article  CAS  PubMed  Google Scholar 

  188. DeWulf DW, Jin T, Bard AJ (1989) Electrochemical and surface studies of carbon dioxide reduction to methane and ethylene at copper electrodes in aqueous solutions. J Electrochem Soc 136:1686–1691

    Article  CAS  Google Scholar 

  189. Wasmus S, Cattaneo E, Vielstich W (1990) Reduction of carbon dioxide to methane and ethene-an on-line MS study with rotating electrodes. Electrochim Acta 35:771–775

    Article  CAS  Google Scholar 

  190. Kyriacou GZ, Anagnostopoulos AK (1993) Influence CO2 partial pressure and the supporting electrolyte cation on the product distribution in CO2 electroreduction. J Appl Electrochem 23:483–486

    CAS  Google Scholar 

  191. Smith BD, Irish DE, Kedzierzawski P, Augustynski J (1997) A surface enhanced raman scattering study of the intermediate and poisoning species formed during the electrochemical reduction of CO2 on copper. J Electrochem Soc 144:4288–4296

    Article  CAS  Google Scholar 

  192. Park S, Wijaya DT, Na J, Lee CW (2021) Towards the large-scale electrochemical reduction of carbon dioxide. Catalysts. https://doi.org/10.3390/catal11020253

    Article  CAS  Google Scholar 

  193. Wang S, Kou T, Baker SE, Duoss EB, Li Y (2022) Electrochemical reduction of CO2 to alcohols: current understanding, progress, and challenges. Adv Energy Sustain Res 3:2100131

    Article  CAS  Google Scholar 

  194. Weng Z, Zhang X, Wu Y, Huo S, Jiang J et al (2017) Self-cleaning catalyst electrodes for stabilized CO2 reduction to hydrocarbons. Angew Chem Int Ed 56:13135–13139

    Article  CAS  Google Scholar 

  195. Shiratsuchi R, Aikoh Y, Nogami G (1993) Pulsed electroreduction of CO2 on copper electrodes. J Electrochem Soc 140:3479–3482

    Article  CAS  Google Scholar 

  196. Nogami G, Itagaki H, Shiratsuchi R (1994) Pulsed electroreduction of CO2 on copper electrodes-II. J Electrochem Soc 141:1138–1142

    Article  CAS  Google Scholar 

  197. Friebe P, Bogdanoff P, Alonso-Vante N, Tributsch H (1997) A real-time mass spectroscopy study of the (electro)chemical factors affecting CO2 reduction at copper. J Catal 168:374–385

    Article  CAS  Google Scholar 

  198. Ishimaru S, Shiratsuchi R, Nogami G (2000) Pulsed electroreduction of CO2 on Cu-Ag alloy electrodes. J Electrochem Soc 147:1864–1867

    Article  CAS  Google Scholar 

  199. Yano J, Yamasaki S (2008) Pulse-mode electrochemical reduction of carbon dioxide using copper and copper oxide electrodes for selective ethylene formation. J Appl Electrochem 38:1721–1726

    Article  CAS  Google Scholar 

  200. Hori Y, Konishi H, Futamura T, Murata A, Koga O et al (2005) Deactivation of copper electrode in electrochemical reduction of CO2. Electrochim Acta 50:5354–5369

    Article  CAS  Google Scholar 

  201. Yano H, Shirai F, Nakayama M, Ogura K (2002) Efficient electrochemical conversion of CO2 to CO, C2H4 and CH4 at a three-phase interface on a Cu net electrode in acidic solution. J Electroanal Chem 519:93–100

    Article  CAS  Google Scholar 

  202. Garg G, Basu S (2015) Studies on degradation of copper nano particles in cathode for CO2 electrolysis to organic compounds. Electrochim Acta 177:359–365

    Article  CAS  Google Scholar 

  203. Marcandalli G, Monteiro MCO, Goyal A, Koper MTM (2022) Electrolyte effects on CO2 electrochemical reduction to CO. Acc Chem Res 55:1900–1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Oloman C, Li H (2008) Electrochemical processing of carbon dioxide. Chemsuschem 1:385–391

    Article  CAS  PubMed  Google Scholar 

  205. Dufek EJ, Lister TE, Stone SG, McIlwain ME (2012) Operation of a pressurized system for continuous reduction of CO2. J Electrochem Soc 159:514–517

    Article  Google Scholar 

  206. Ju HK, Kaur G, Kulkarni AP, Giddey S (2019) Challenges and trends in developing technology for electrochemically reducing CO2 in solid polymer electrolyte membrane reactors. J CO2 Util 32:178–186

    Article  CAS  Google Scholar 

  207. Yang H, Kaczur JJ, Sajjad SD, Masel RI (2017) Electrochemical conversion of CO2 to formic acid utilizing sustainion™ membranes. J CO2 Util 20:208–217

    Article  CAS  Google Scholar 

  208. Aeshala LM, Verma A (2015) Amines as reaction environment regulator for CO2 electrochemical reduction to CH4. Macromol Symp 357:79–85

    Article  CAS  Google Scholar 

  209. Xia Z, Qiu W, Bao H, Yang B, Lei L et al (2016) Electrochemical reduction of gaseous CO2 with a catechol and polyethyleneimine co-deposited polypropylene membrane. Electrochem Commun 71:1–4

    Article  Google Scholar 

  210. Kutz RB, Chen Q, Yang H, Sajjad SD, Liu Z, Masel IR (2017) Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis. Energy Technol 5:929–936

    Article  CAS  Google Scholar 

  211. Kaczur JJ, Yang H, Liu Z, Sajjad SD, Masel RI (2020) A review of the use of immobilized ionic liquids in the electrochemical conversion of CO2. J Carbon Res 6:1–12

    Google Scholar 

  212. Fan Q, Zhang M, Jia M, Liu S, Qiu J, Sun Z (2018) Electrochemical CO2 reduction to C2+ species: heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Mater Today Energy 10:280–301

    Article  Google Scholar 

  213. Do TN, You C, Kim J (2022) A CO2 utilization framework for liquid fuels and chemical production: techno-economic and environmental analysis. Energy Environ Sci 15:169–184

    Article  CAS  Google Scholar 

  214. Huang Z, Grim RG, Schaidle JA, Tao L (2021) The economic outlook for converting CO2 and electrons to molecules. Energy Environ Sci 14:3664–3678

    Article  CAS  Google Scholar 

  215. Jouny M, Luc W, Jiao F (2018) General techno-economic analysis of CO2 electrolysis systems. Ind Eng Chem Res 57:2165–2177

    Article  CAS  Google Scholar 

  216. Dongare S, Singh N, Bhunia H (2021) Electrocatalytic reduction of CO2 to useful chemicals on copper nanoparticles. Appl Surf Sci 537:148020

    Article  CAS  Google Scholar 

  217. Dongare S, Singh N, Bhunia H, Bajpai P, Das A (2021) Electrochemical reduction of carbon dioxide to ethanol: a review. ChemistrySelect 6:11603–11629

    Article  CAS  Google Scholar 

  218. Verma S, Kim B, Jhong H-RM, Ma S, Kenis PJA (2016) A Gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. Chemsuschem 9:1972–1979

    Article  CAS  PubMed  Google Scholar 

  219. Gas Innovation (2018) Electrolytic carbon monoxide solution. Gas Innovations, La Porte, TX. https://gasinnovations.com/wp-content/uploads/Gas-Innovations-eCOs-Tech-Brief-Benefits.pdf Accessed 16 Decemeber 2022.

  220. Dioxide Materials (2016) Converting CO2 into Fuel and Chemicals Washington, DC: A. R. P. Agency-Energy.http://arpa-e.energy.gov/?q=slick-sheet-project/converting-co2-fuel-and-chemicals Accessed 16 December 2022.

  221. Mantra venture group (2014) ERC and MRFC Technology. Mantra Venture Group,Surrey, Canada.https://1stdirectory.co.uk/_assets/files_comp/9a5be6a3-bb42-4244-9780-2f9a2a7dc3dc.pdf Accessed 16 December 2022.

  222. Agarwal AS, Zhai Y, Hill D, Sridhar N (2011) The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. Chemsuschem 4:1301–1310

    Article  CAS  PubMed  Google Scholar 

  223. Haas T, Krause R, Weber R, Demler M, Schmid G (2018) Technical photosynthesis involving CO2 electrolysis and fermentation. Nat Catal 1:32–39

    Article  CAS  Google Scholar 

  224. De Luna P, Quintero-Bermudez R, Dinh C-T, Ross MB, Bushuyev OS et al (2018) Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat Catal 1:103–110

    Article  Google Scholar 

  225. Sánchez OG, Birdja YY, Bulut M, Vaes J, Breugelmans T, Pant D (2019) Recent advances in industrial CO2 electroreduction. Curr Opin Green Sustain Chem 16:47–56

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India, under its Early Career Research Award Scheme vide sanction order No. ECR/2016/001340, dated 15.03.2017 and ECR/2016/001844, dated – 23/03/2017.

Author information

Authors and Affiliations

Authors

Contributions

AK, LMA and TP wrote and reviewed the manuscript.

Corresponding authors

Correspondence to Leela Manohar Aeshala or Tapas Palai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Aeshala, L.M. & Palai, T. Electrochemical reduction of CO2 to useful fuel: recent advances and prospects. J Appl Electrochem 53, 1295–1319 (2023). https://doi.org/10.1007/s10800-023-01850-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01850-x

Keywords

Navigation