Skip to main content
Log in

Efficient photoanode characteristics of cadmium sulfide films multi-deposited through a chemical bath deposition process

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Photoelectrochemical and photocatalytic reactions are extensively investigated in terms of artificial photosynthesis as well as environmental purification, where the application of a photoelectrode (or a photocatalyst) responding to visible light for a targeted reaction is desired towards the massive decomposition to products. Cadmium sulfide (CdS) has attracted attention as one of the promising candidates, owing to its narrow band gap and large absorption coefficient. In the present work, CdS photoelectrode was prepared for the first time by chemical bath deposition process, especially with multiple deposition steps. When it was utilized as the photoanode in the presence of S2−, the steady-state photocurrents of the multi-deposited CdS were much higher than that of the single-deposited one. The above improvement was attributable to an increase in surface area originating in the formation of porous structure. In addition, the multi-deposited CdS got thicker on the vertical direction to electrode substrate, causing the redshift of its absorption edge, and thus enhancing the photoanodic output. This work provides a novel and effective approach for fabricating CdS photoelectrode.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wen P, Su F, Li H, Sun Y, Liang Z, Liang W, Zhang J, Qin W, Geyer SM, Qiu Y, Jiang L (2020) A Ni2P nanocrystal cocatalyst enhanced TiO2 photoanode towards highly efficient photoelectrochemical water splitting. Chem Eng J 385:123878. https://doi.org/10.1016/j.cej.2019.123878

    Article  CAS  Google Scholar 

  2. Kang MJ, Kim CW, Cha HG, Pawar AU, Kang YS (2021) Selective liquid chemicals on CO2 reduction by energy level tuned rGO/TiO2 dark cathode with BiVO4 photoanode. Appl Catal B 295:120267. https://doi.org/10.1016/j.apcatb.2021.120267

    Article  CAS  Google Scholar 

  3. Kaur G, Divya KSA, Satsangi VR, Dass S, Shrivastav R (2020) Expanded light-absorption and efficient charge-separation: bilayered thin film nano-hetero-structures, CuO/Cu-ZnO, make efficient photoanode in photoelectrochemical water splitting. J Appl Electrochem 50:887–906. https://doi.org/10.1007/s10800-020-01443-y

    Article  CAS  Google Scholar 

  4. Zhao X, Pan D, Chen X, Li R, Jiang T, Wang W, Li G, Leung DYC (2019) g-C3N4 photoanode for photoelectrocatalytic synergistic pollutant degradation and hydrogen evolution. Appl Surf Sci 467–468:658–665. https://doi.org/10.1016/j.apsusc.2018.10.090

    Article  CAS  Google Scholar 

  5. Abe T, Fukui K, Kawai Y, Nagai K, Kato H (2016) A water splitting system using organo-photocathode and titanium dioxide photoanode capable of bias-free H2 and O2 evolution. Chem Commun 52(49):7735–7737. https://doi.org/10.1039/C6CC01225F

    Article  CAS  Google Scholar 

  6. Honda K, Fujishima A (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. https://doi.org/10.1038/238037a0

    Article  PubMed  Google Scholar 

  7. Padmanabhan NT, Thomas N, Louis J, Mathew DT, Ganguly P, John H, Pillai SC (2021) Graphene coupled TiO2 photocatalysts for environmental applications: a review. Chemosphere 271:129506. https://doi.org/10.1016/j.chemosphere.2020.129506

    Article  CAS  PubMed  Google Scholar 

  8. Fang F, Liu Y, Sun X, Fu C, Bhoi YP, Xiong W, Huang W (2021) TiO2 Facet-dependent reconstruction and photocatalysis of CuOx/TiO2 photocatalysts in CO2 photoreduction. Appl Surf Sci 564:150407. https://doi.org/10.1016/j.apsusc.2021.150407

    Article  CAS  Google Scholar 

  9. Sharma S, Dutta V, Raizada P, Hosseini-Bandegharaei A, Singh P, Nguyen V (2021) Tailoring cadmium sulfide-based photocatalytic nanomaterials for water decontamination: a review. Environ Chem Lett 19:271–306. https://doi.org/10.1007/s10311-020-01066-x

    Article  CAS  Google Scholar 

  10. Shinde SK, Ghodake GS, Velhal NB, Takale MV, Kim DY, Rath MC, Dhaygude HD, Fulari VJ (2017) Enhanced solar cell performance of electron beam irradiated CdS photoanode by electrodeposition method. J Solid State Electrochem 21:1517–1522. https://doi.org/10.1007/s10008-016-3484-0

    Article  CAS  Google Scholar 

  11. Mohanty B, Nayak J (2021) Band gap narrowing and prolongation of carrier lifetime in solution-processed CeO2/CdS thin films for application as photoanodes in quantum dot sensitized solar cells. Ceram Int 47(18):26144–26156. https://doi.org/10.1016/j.ceramint.2021.06.022

    Article  CAS  Google Scholar 

  12. Qiu S, Guo R, Wang Q, Yang F, Han Y, Peng X, Yuan H, Wang X (2021) CdS nanoflakes decorated by Ni(OH)2 nanoparticles for enhanced photocatalytic hydrogen production. Int J Energy Res 45(10):14985–14994. https://doi.org/10.1002/er.6777

    Article  CAS  Google Scholar 

  13. Tian F, Zhang H, Liu S, Wu T, Yu J, Wang D, Jin X, Peng C (2021) Visible-light-driven CO2 reduction to ethylene on CdS: enabled by structural relaxation-induced intermediate dimerization and enhanced by ZIF-8 coating. Appl Catal B 285:119834. https://doi.org/10.1016/j.apcatb.2020.119834

    Article  CAS  Google Scholar 

  14. Shenoy S, Jang E, Park TJ, Gopinath CS, Sridharan K (2019) Cadmium sulfide nanostructures: Influence of morphology on the photocatalytic degradation of erioglaucine and hydrogen generation. Appl Surf Sci 483:696–705. https://doi.org/10.1016/j.apsusc.2019.04.018

    Article  CAS  Google Scholar 

  15. Wang X, Tian H, Yang Y, Wang H, Wang S, Zheng W, Liu Y (2012) Reduced graphene oxide/CdS for efficiently photocatalystic degradation of methylene blue. J Alloys Compd 524:5–12. https://doi.org/10.1016/j.jallcom.2012.02.058

    Article  CAS  Google Scholar 

  16. Qiu B, Cai L, Zhang N, Tao X, Chai Y (2020) A ternary dumbbell structure with spatially separated catalytic sites for photocatalytic overall water splitting. Adv Sci 7:1903568. https://doi.org/10.1002/advs.201903568

    Article  CAS  Google Scholar 

  17. Wang R, Yan J, Zu M, Yang S, Cai X, Gao Q, Fang F, Zhang S, Zhang S (2018) Facile synthesis of interlocking g-C3N4/CdS photoanode for stable photoelectrochemical hydrogen production. Electrochim Acta 279:74–83. https://doi.org/10.1016/j.electacta.2018.05.076

    Article  CAS  Google Scholar 

  18. Chen Y, Zhong W, Chen F, Wang P, Fan J, Yu H (2022) Photoinduced self-stability mechanism of CdS photocatalyst: The dependence of photocorrosion and H2-evolution performance. J Mater Sci Technol 121:19–27. https://doi.org/10.1016/j.jmst.2021.12.051

    Article  Google Scholar 

  19. Sun Q, Wang N, Yu J, Yu JC (2018) A hollow porous CdS photocatalyst. Adv Mater 30:1804368. https://doi.org/10.1002/adma.201804368

    Article  CAS  Google Scholar 

  20. Ruan M, Cai X, Lan Y, Xing H (2020) Hexagonal CdS photoanode modified with Pt and cobalt phosphate cocatalyst for efficient photoelectrochemical performance. Mater Lett 260:126947. https://doi.org/10.1016/j.matlet.2019.126947

    Article  CAS  Google Scholar 

  21. Yehezkeli O, Oliveira DRB, Cha JN (2015) Electrostatically assembled CdS-Co3O4 nanostructures for photo-assisted water oxidation and photocatalytic reduction of dye molecules. Small 11:668–674. https://doi.org/10.1002/smll.201401490

    Article  CAS  PubMed  Google Scholar 

  22. Wei L, Guo Z, Jia X (2021) Probing photocorrosion mechanism of CdS films and enhancing photoelectrocatalytic activity via cocatalyst. Catal Lett 151:56–66. https://doi.org/10.1007/s10562-020-03275-z

    Article  CAS  Google Scholar 

  23. Banerjee R, Pal A, Ghosh D, Ghosh AB, Nandi M, Biswas P (2021) Improved photocurrent response, photostability and photocatalytic hydrogen generation ability of CdS nanoparticles in presence of mesoporous carbon. Mater Res Bull 134:111085. https://doi.org/10.1016/j.materresbull.2020.111085

    Article  CAS  Google Scholar 

  24. Shinde PS, Park JW, Mahadik MA, Ryu J, Park JH, Yi Y, Jang JS (2016) Fabrication of efficient CdS nanoflowers-decorated TiO2 nanotubes array heterojunction photoanode by a novel synthetic approach for solar hydrogen production. Int J Hydrogen Energy 41(46):21078–21087. https://doi.org/10.1016/j.ijhydene.2016.08.205

    Article  CAS  Google Scholar 

  25. Xing W, Ni L, Huo P, Lu Z, Liu X, Luo Y, Yan Y (2012) Preparation high photocatalytic activity of CdS/halloysite nanotubes (HNTs) nanocomposites with hydrothermal method. Appl Surf Sci 259:698–704. https://doi.org/10.1016/j.apsusc.2012.07.102

    Article  CAS  Google Scholar 

  26. Jones EW, Barrioz V, Irvine SJC, Lamb D (2009) Towards ultra-thin CdTe solar cells using MOCVD. Thin Solid Films 517:2226–2230. https://doi.org/10.1016/j.tsf.2008.10.093

    Article  CAS  Google Scholar 

  27. Shen XP, Yuan AH, Wang F, Hong JM, Xu Z (2005) Fabrication of well-aligned CdS nanotubes by CVD-template method. Solid State Commun 133(1):19–22. https://doi.org/10.1016/j.ssc.2004.09.053

    Article  CAS  Google Scholar 

  28. Uda H, Yonezawa H, Ohtsubo Y, Kosaka M, Sonomura H (2003) Thin CdS films prepared by metalorganic chemical vapor deposition. Sol Energy Mater Sol Cells 75(1–2):219–226. https://doi.org/10.1016/S0927-0248(02)00163-0

    Article  CAS  Google Scholar 

  29. Lokhande CD, Sankapal BR, Pathan HM, Muller M, Giersig M, Tributsch H (2001) Some structural studies on successive ionic layer adsorption and reaction (SILAR)-deposited CdS thin films. Appl Surf Sci 181(3–4):277–282. https://doi.org/10.1016/S0169-4332(01)00392-0

    Article  CAS  Google Scholar 

  30. Sağlam M, Ateş A, Güzeldir B, Astam A, Yıldırım MA (2009) Effects of thermal annealing on electrical characteristics of Cd/CdS/n-Si/Au-Sb sandwich structure. J Alloys Compd 484:570–574. https://doi.org/10.1016/j.jallcom.2009.04.140

    Article  CAS  Google Scholar 

  31. Pareek A, Dom R, Borse PH (2013) Fabrication of large area nanorod like structured CdS photoanode for solar H2 generation using spray pyrolysis technique. Int J Hydrogen Energy 38(1):36–44. https://doi.org/10.1016/j.ijhydene.2012.10.057

    Article  CAS  Google Scholar 

  32. Bai S, Li Q, Han J, Yang X, Shu X, Sun J, Sun L, Luo R, Li D, Chen A (2019) Photoanode of LDH catalyst decorated semiconductor heterojunction of BiVO4/CdS to enhance PEC water splitting efficiency. Int J Hydrogen Energy 44(45):24642–24652. https://doi.org/10.1016/j.ijhydene.2019.07.214

    Article  CAS  Google Scholar 

  33. Takashima T, Fujishiro Y, Irie H (2020) Noble metal modification of CdS-covered CuInS2 electrodes for improved photoelectrochemical activity and stability. Catalysts 10(9):949. https://doi.org/10.3390/catal10090949

    Article  CAS  Google Scholar 

  34. Hu L, Patterson RJ, Hu Y, Chen W, Zhang Z, Yuan L, Chen Z, Conibeer GJ, Wang G, Huang S (2017) High performance PbS colloidal quantum dot solar cells by employing solution-processed CdS thin films from a single-source precursor as the electron transport layer. Adv Funct Mater 27:1703687. https://doi.org/10.1002/adfm.201703687

    Article  CAS  Google Scholar 

  35. Wang S, Zhu B, Liu M, Zhang L, Yu J, Zhou M (2019) Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl Catal B 243:19–26. https://doi.org/10.1016/j.apcatb.2018.10.019

    Article  CAS  Google Scholar 

  36. Hashimoto Y, Kohara N, Negami T, Nishitani N, Wada T (1998) Chemical bath deposition of Cds buffer layer for GIGS solar cells. Sol Energy Mater Sol Cells 50(1–4):71–77

    Article  CAS  Google Scholar 

  37. ICSD No. 081925

  38. Liang YC, Lung TW (2016) Growth of hydrothermally derived CdS-based nanostructures with various crystal features and photoactivated properties. Nanoscale Res Lett 11:264. https://doi.org/10.1186/s11671-016-1490-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rabinovich E, Hodes G (2013) Effective bandgap lowering of CdS deposited by successive ionic layer adsorption and reaction. J Phys Chem C 117(4):1611–1620. https://doi.org/10.1021/jp3105453

    Article  CAS  Google Scholar 

  40. Wang S, Chen P, Yun JH, Hu Y, Wang L (2017) An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting. Angew Chem Int Ed 129(29):8620–8624. https://doi.org/10.1002/ange.201703491

    Article  Google Scholar 

  41. Li Y, Liu Z, Zhang J, Guo Z, Xin Y, Zhao L (2019) 1D/0D WO3/CdS heterojunction photoanodes modified with dual co-catalysts for efficient photoelectrochemical water splitting. J Alloys Compd 790:493–501. https://doi.org/10.1016/j.jallcom.2019.03.178

    Article  CAS  Google Scholar 

  42. Wang H, Wang B, Yu J, Hu Y, Xia C, Zhang J, Liu R (2015) Significant enhancement of power conversion efficiency for dye sensitized solar cell using 1D/3D network nanostructures as photoanodes. Sci Rep 5:9305. https://doi.org/10.1038/srep09305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ahmed R, Reifsnider K (2011) Study of influence of electrode geometry on impedance spectroscopy. Int J Electrochem Sci 6:1159–1174

    Article  CAS  Google Scholar 

  44. Ilaiyaraja P, Das TK, Mocherla PSV, Sudakar C (2017) Well-connected microsphere-nanoparticulate TiO2 composites as high performance photoanode for dye sensitized solar cell. Sol Energy Mater Sol Cells 169:86–97. https://doi.org/10.1016/j.solmat.2017.05.001

    Article  CAS  Google Scholar 

  45. Benstaali W, Bentata S, Abbad A, Bentounes HA, Lantri T (2015) Optoelectronic properties of transition metals doped cubic cadmium sulfide. Mater Sci Semicond Process 36:184–191. https://doi.org/10.1016/j.mssp.2015.03.007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HT: Investigation, writing-original draft. MC: Investigation. QG: Resources, writing-review & editing. TA: Resources, writing-review & editing, supervision.

Corresponding author

Correspondence to Toshiyuki Abe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 914 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuchikado, H., Chen, M., Guan, G. et al. Efficient photoanode characteristics of cadmium sulfide films multi-deposited through a chemical bath deposition process. J Appl Electrochem 53, 1137–1146 (2023). https://doi.org/10.1007/s10800-022-01838-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01838-z

Keywords

Navigation