Skip to main content
Log in

Efficient methanol electrooxidation on activated pencil graphite electrode modified with PtCu catalyst

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Herein, PtCu supported on activated pencil graphite electrode (APGE) is prepared by a Cu electrodeposition followed by partial galvanic replacement of Cu with Pt atoms. The as-synthesized catalyst (PtCu/APGE) possessing better electrocatalytic performance and higher long-time stability than commercial Pt/C catalyst can be used as a favorable catalyst toward electrooxidation of methanol. The Tafel analysis in agreement with electrochemical impedance spectroscopy (EIS) confirms predominance of hydroxyl adsorption in the low potential region and inactive oxide layer formation at high potentials region on the kinetics of methanol oxidation. The obtained remarkable performance of catalysts can be attributed to the APGE as an excellent support for metallic nanoparticles and the cooperative effect of Cu for oxidative removal of poisoning intermediates.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chakraborty D, Chorkendorff I, Johannessen T (2006) Electrochemical impedance spectroscopy study of methanol oxidation on nanoparticulate PtRu direct methanol fuel cell anodes: kinetics and performance evaluation. J Power Sources 162:1010–1022

    CAS  Google Scholar 

  2. Ezhil Vilian AT, Hwang SK, Kwak CH, Oh SK, Kim CY, Lee G, Lee JB, Huh YS, Han YK (2016) Pt–Au bimetallic nanoparticles decorated on reduced graphene oxide as an excellent electrocatalysts for methanol oxidation. Synth Met 219:52–59

    Google Scholar 

  3. Zhang G, Yang Z, Zhang W, Wang Y (2016) Facile synthesis of graphene nanoplates-supported porous Pt–Cu alloys with high electrocatalytic property for methanol oxidation. J Mater Chem A 4:3316–3323

    CAS  Google Scholar 

  4. Pongpichayaku N, Waenkeaw P, Jakmunee J, Themsirimongkon S, Saipanya S (2020) Activity and stability improvement of platinum loaded on reduced graphene oxide and carbon nanotube composites for methanol oxidation. J Appl Electrochem 50:51–62

    Google Scholar 

  5. Shengqing HL, Jia WF (2015) Conversion of commercial Pt/C to “clean” Pt–Cu/C catalyst with high activity toward methanol oxidation. Electrochim Acta 184:331–337

    Google Scholar 

  6. Kamyabi MA, Mohammadian H, Jadali S, Moharramnezhad M (2019) Hydrothermal syntheses of NiO GO nanocomposite on 3D nickel foam as a support for Pt nanoparticles and its superior electrocatalytic activity towards methanol oxidation. Electroanalysis 31:1484–1493

    Google Scholar 

  7. Liu W, Qin X, Zhang X, Shao Z, Yi B (2016) Preparation of PtRu/WO3–C by intermittent microwave method with enhanced catalytic activity of methanol oxidation. J Appl Electrochem 46:887–893

    CAS  Google Scholar 

  8. Duan W, Li A, Chen Y, Zhang J, Zhuo K (2019) Amino acid-assisted preparation of reduced graphene oxidesupported PtCo bimetallic nanospheres for electrocatalytic oxidation of methanol. J Appl Electrochem 49:413–421

    CAS  Google Scholar 

  9. Yang LX, Bock C, Dougall BM, Park J (2004) The role of the WOx ad-component to Pt and PtRu catalysts in the electrochemical CH3OH oxidation reaction. J Appl Electrochem 34:427–438

    CAS  Google Scholar 

  10. Bhattacharjee D, Chowdhury SR, Bhattacharya SK, Dasgupta S (2019) Room temperature synthesis of PdxNi100-x nanoalloy: superior catalyst for electro-oxidation of methanol and ethanol. J Appl Electrochem 49:681–691

    CAS  Google Scholar 

  11. Qiu HJ, Shen X, Wang J, Hirata A, Fujita T, Wang Y, Chen M (2015) Aligned nanoporous Pt–Cu bimetallic micro-wires with high catalytic activity towards methanol electro-oxidation. ACS Catal 5:3779–3785

    CAS  Google Scholar 

  12. Bus-Rogero C, Herrero E, Feliu JM (2014) Ethanol oxidation on Pt single-crystal electrodes: surface-structure effects in alkaline medium. ChemPhysChem 15:2019–2028

    Google Scholar 

  13. Kavian S, Azizi SN, Ghasemi S (2016) Fabrication of novel nanozeolite-supported bimetallic Pt–Cu nanoparticles modified carbon paste electrode for electrocatalytic oxidation of formaldehyde. Int J Hydrogen Energy 41:14026–14035

    CAS  Google Scholar 

  14. Brankovic SR, Wang JX, Adzic RR (2001) Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf Sci 474:L173–L179

    CAS  Google Scholar 

  15. Brankovic SR, McBreen J, Adzic RR (2001) Spontaneous deposition of Pt on the Ru(0001) surface. J Electroanal Chem 503:99–104

    CAS  Google Scholar 

  16. Brankovic SR, McBreen J, Adzic RR (2001) Spontaneous deposition of Pd on a Ru(0001) surface. Surf Sci 479:L363–L368

    CAS  Google Scholar 

  17. Fan Y, Liu PF, Zhang ZW, Cui Y, Zhang Y (2015) Three-dimensional hierarchical porous platinumecopper alloy networks with enhanced catalytic activity towards methanol and ethanol electro-oxidation. J Power Sources 296:282–289

    CAS  Google Scholar 

  18. Xing R, Li R, Tong L, Li B, Kong D, Tian S, Liu S (2018) Platinum–copper bimetallic alloy nanoflowers as efficient electrocatalyst for the methanol oxidation reaction. J Nanosci Nanotechnol 18:8296–8301

    CAS  PubMed  Google Scholar 

  19. Guo M, Tu Q, Wang L, Tang Y, Song H, Zhou J, Zhang Z, Wang Y, Liu C (2019) Hollow Pt skim-sandwiched Cu spheres supported on reduced graphene oxide-carbon nanotube architecture for efficient methanol electrooxidation. Int J Hydrogen Energy 4:6886–6895

    Google Scholar 

  20. Kamyabi MA, Tadayyon Nosratabad E, Jadali S (2019) A Pt-polymer nanocomposite as the excellent electro-catalyst: synthesis, characterization, and electrochemical behavior towards methanol oxidation in the alkaline media. Synth Met 255:116110

    CAS  Google Scholar 

  21. Kamyabi MA, Jadali S (2021) A sponge like Pd arrays on Ni foam substrate: highly active non-platinum electrocatalyst for methanol oxidation in alkaline media. Mater Chem Phys 257:123626

    CAS  Google Scholar 

  22. Kamyabi MA, Jadali S (2021) Rational design of PdCu nanoparticles supported on a templated Ni foam: the cooperation effect of morphology and composition for electrocatalytic oxidation of ethanol. Int J Hydrogen Energy 46:39387–39403

    CAS  Google Scholar 

  23. Jadali S, Kamyabi MA, Alizadeh T (2022) The supported forest-like structure of PtSn as an effective deterrent for acetaldehyde formation during the electrocatalytic oxidation of ethanol. Fuel 325:124780

    CAS  Google Scholar 

  24. Zhang Y, Liu Y, Liu W, Li X, Mao L (2017) Synthesis of honeycomb-like mesoporous nitrogen-doped carbon nanospheres as Pt catalyst supports for methanol oxidation in alkaline media. Appl Surf Sci 407:64–71

    CAS  Google Scholar 

  25. Kamyabi MA, Ebrahimi Qaratapeh K, Jadali S, Moharramnezhad M (2019) Decorating the carbon felt electrode with polymeric platinize nanocomposite: characterization and electrocatalytic activity towards methanol oxidation reaction. J Chem Sci 131:1–9

    CAS  Google Scholar 

  26. Xie Y, Li Z, Wang Y, Xu S, Lin S (2018) Freezing synthesis of Pt/3D GNs (C) composites as efficient electrocatalysts for methanol oxidation. J Appl Electrochem 48:355–364

    CAS  Google Scholar 

  27. Theres GS, Velayutham G, Suresh C, Krishnan PS, Shanthi K (2020) Promotional effect of Ni–Co/ordered mesoporous carbon as non-noble hybrid electrocatalyst for methanol electro-oxidation. J Appl Electrochem 50:639–653

    CAS  Google Scholar 

  28. Odewunmi NA, Kawde AN, Ibrahim M (2019) In-situ single-step electrochemical AgO modified graphite pencil electrode for trace determination of DL-methionine in human serum sample. Sensor Actuat B-Chem 281:765–773

    CAS  Google Scholar 

  29. Babu KJ, Sheet S, Lee YS, Kumar GG (2018) Three-dimensional dendrite Cu−Co/reduced graphene oxide architectures on a disposable pencil graphite electrode as an electrochemical sensor for nonenzymatic glucose detection. ACS Sustain Chem Eng 6:1909–1918

    Google Scholar 

  30. Zhu K, Ren X, Sun X, Zhu L, Sun Z (2019) Effect of supporting electrolyte on the surface corrosion and anodic oxidation performance of graphite electrode. Electrocatalysis 10:549–559

    CAS  Google Scholar 

  31. Mpeta LS, Gwebu SS, Arotiba OA, Maxakato NW (2019) Methanol oxidation in alkaline media with Pt–Au/fMWCNTs and Pt–Pd/fMWCNTs electrocatalysts on an exfoliated graphite electrode. Electrocatalysis 10:672–679

    CAS  Google Scholar 

  32. Mašek J (1960) A simple microcoulometric arrangement for polarographic purposes using the three-electrode system. J Electroanal Chem 1:416–421

    Google Scholar 

  33. Torrinha Á, Amorim CG, Montenegro MCBSM, Araújo AN (2018) Biosensing based on pencil graphite electrodes. Talanta 190:235–247

    CAS  PubMed  Google Scholar 

  34. Sine´ G, Duo I, El Roustom B, Fo´ti G, Comninellis CH, (2006) Deposition of clusters and nanoparticles onto boron-doped diamond electrodes for electrocatalysis. J Appl Electrochem 36:847–862

    Google Scholar 

  35. Ponce A, Aguilar JA, Tate J, Yacaman MJ (2021) Advances in the electron diffraction characterization of atomic clusters and nanoparticles. Nanoscale Adv 3:311–325

    PubMed  Google Scholar 

  36. Schmid G, Fenske D (2010) Metal clusters and nanoparticles. Phil Trans R Soc A 368:1207–1210

    CAS  PubMed  Google Scholar 

  37. Liu L, Corma A (2020) Evolution of isolated atoms and clusters in catalysis. Trends Chem 2:383–400

    CAS  Google Scholar 

  38. Rupprechter G (2021) Operando surface spectroscopy and microscopy during catalytic reactions: from clusters via nanoparticles to meso-scale aggregates. Small 17:2004289

    CAS  Google Scholar 

  39. Boronat M, Leyva-Perez A, Corma A (2014) Theoretical and experimental insights into the origin of the catalytic activity of subnanometric gold clusters: attempts to predict reactivity with clusters and nanoparticles of gold. Acc Chem Res 47:834–844

    CAS  PubMed  Google Scholar 

  40. Zhang W, Wang H, Jiang J, Sui Z, Zhu Y, Chen D, Zhou X (2020) Size dependence of Pt catalysts for propane dehydrogenation: from atomically dispersed to nanoparticles. ACS Catal 10:12932–12942

    CAS  Google Scholar 

  41. Choi CH, Kim M, Kwon HC, Cho SJ, Yun S, Kim HT, Mayrhofer KJJ, Kim H, Choi M (2016) Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat Commun 7:10922

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen X, Peng M, Cai X, Chen Y, Jia Z, Deng Y, Mei B, Jiang Z, Xiao D, Wen X, Wang N, Liu H, Ma D (2021) Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction. Nat Commun 12:2664

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheshideh H, Nasirpouri F (2017) Cyclic voltammetry deposition of nickel nanoparticles on TiO2 nanotubes and their enhanced properties for electro-oxidation of methanol. J Electroanal Chem 797:121–133

    CAS  Google Scholar 

  44. Li S, Qiu Y, Guo X (2009) Comparison of PPy/sulfate–copper complexes synthesized by the pulse method and the traditional DC method. React Funct Polym 69:743–749

    Google Scholar 

  45. Roya A, Jadhava HS, Chob M, Seo JG (2019) Electrochemical deposition of self-supported bifunctional copper oxide electrocatalyst for methanol oxidation and oxygen evolution reaction. J Ind Eng Chem 76:515–523

    Google Scholar 

  46. Lajevardi SA, Shahrabi T (2010) Effects of pulse electrodeposition parameters on the properties of Ni–TiO2 nanocomposite coatings. Appl Surf Sci 256:6775–6781

    CAS  Google Scholar 

  47. Sivasakthi P, Premlatha S, Ramesh Bapu GNK (2014) Pulse electrodeposited Ni-Gd2O3 nanocomposite electrode as electrocatalysts for ethanol electro-oxidation. Electrochim Acta 141:134–140

    CAS  Google Scholar 

  48. Ning D, Zhang A, Murtaza M, Wu H (2019) Effect of surfactants on the electrodeposition of Cu–TiO2 composite coatings prepared by jet electrodeposition. J Alloy Comp 777:1245–1250

    CAS  Google Scholar 

  49. Li X, Xu H, Yan W (2017) Effects of twelve sodium dodecyl sulfate (SDS) on electro-catalytic performance and stability of PbO2 electrode. J Alloys Compd 718:386–395

    CAS  Google Scholar 

  50. Kilic F, Gul H, Aslana S, Alp A, Akbulut H (2013) Effect of CTAB concentration in the electrolyte on the tribological properties of nanoparticle SiC reinforced Ni metal matrix composite (MMC) coatings produced by electrodeposition. Colloids Surf A 419:53–60

    CAS  Google Scholar 

  51. Zielinska K, Stankiewicz A, Szczygiiel I (2012) Electroless deposition of Ni-P-nano-ZrO2 composite coatings in the presence of various types of surfactants. J Colloid Interface Sci 377:362–367

    CAS  PubMed  Google Scholar 

  52. Bozzini B, D’Urzo L, Re M, Riccardis FD (2008) Electrodeposition of Cu from acidic sulphate solutions containing cetyltrimethylammonium bromide (CTAB). J Appl Electrochem 38:1561–1569

    CAS  Google Scholar 

  53. Zamblau I, Varvara S, Muresan LM (2011) Corrosion behavior of Cu–SiO2 nanocomposite coatings obtained by electrodeposition in the presence of cetyl trimethyl ammonium bromide. J Mater Sci 46:6484–6490

    CAS  Google Scholar 

  54. Du X, Luo S, Du H, Tang M, Huang X, Shen PK (2016) Monodisperse and self-assembled Pt–Cu nanoparticles as an efficient electrocatalyst for methanol oxidation reaction. J Mater Chem A 4:1579–1585

    CAS  Google Scholar 

  55. Cao Y, Yang Y, Shan Y, Huang Z (2016) One-pot and facile fabrication of hierarchical branched Pt−Cu nanoparticles as excellent electrocatalysts for direct methanol fuel cells. ACS Appl Mater Interfaces 8:5998–6003

    CAS  PubMed  Google Scholar 

  56. Liao Y, Yu G, Zhang Y, Guo T, Chang F, Zhong CJ (2016) Composition-tunable PtCu alloy nanowires and electrocatalytic synergy for methanol oxidation reaction. J Phys Chem 120:10476–10484

    CAS  Google Scholar 

  57. Yang L, Ding Y, Chen L, Luo S, Tang Y, Liu C (2017) Hierarchical reduced graphene oxide supported dealloyed platinum-copper nanoparticles for highly efficient methanol electrooxidation. Int J Hydrogen Energy 42:6705–6712

    CAS  Google Scholar 

  58. Cao J, Du Y, Dong M, Chen Z, Xu J (2018) Template-free synthesis of chain-like PtCu nanowires and their superior performance for oxygen reduction and methanol oxidation reaction. J Alloys Compd 747:124–130

    CAS  Google Scholar 

  59. Li R, Li S, Liu Y, Ochiai T, Latthe SS, Nakata K, Xing R, Liu S (2019) Polyelectrolyte-assisted soft reduced process for Pt–Cu nanoclusters with enhanced electrocatalytic activity for the methanol oxidation reaction. J Phys Chem Solids 124:361–366

    CAS  Google Scholar 

  60. Zhong J, Li L, Waqas M, Wang X, Fan Y, Qi J, Yang B, Rong C, Chen W, Sun S (2019) Deep eutectic solvent-assisted synthesis of highly efficient PtCu alloy nanoclusters on carbon nanotubes for methanol oxidation reaction. Electrochim Acta 322:134677

    CAS  Google Scholar 

  61. Li X, Zhou Y, Du Y, Xu J, Wang W, Chen Z, Cao J (2019) PtCu nanoframes as ultra-high performance electrocatalysts for methanol oxidation. Int J Hydrogen Energy 44:18050–18057

    CAS  Google Scholar 

  62. Xiang H, Zheng Y, Sun Y, Guo T, Zhang P, Li W, Kong S, Ouzounian M, Chen H, Li H, Hu TS, Yu G, Feng Y, Liu S (2020) Bimetallic and postsynthetically alloyed PtCu nanostructures with tunable reactivity for the methanol oxidation reaction. Nanoscale Adv 2:1603–1612

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang Y, Guo YF, Fu C, Zhang RH, Zhan W, Wang P, Zhang X, Wang Q, Zhou XW (2021) In-situ loading synthesis of graphene supported PtCu nanocube and its high activity and stability for methanol oxidation reaction. J Colloid Interface Sci 595:107–117

    CAS  PubMed  Google Scholar 

  64. McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108:2646–2687

    CAS  PubMed  Google Scholar 

  65. Kamyabi MA, Hajari N (2017) Low potential and non-enzymatic hydrogen peroxide sensor based on copper oxide nanoparticle on activated pencil graphite electrode. J Braz Chem Soc 28:808–818

    CAS  Google Scholar 

  66. Yang J, Jiang LC, Zhang WD, Gunasekaran S (2010) A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays. Talanta 82:25–33

    CAS  PubMed  Google Scholar 

  67. Wen-Zhi L, You-Qin L (2009) Preparation of nano-copper oxide modified glassy carbon electrode by a novel film plating/potential cycling method and its characterization. Sensor Actuat B-Chem 141:147–153

    Google Scholar 

  68. Hosseini SR, Ghasemi S, Ghasemi SA (2016) Effect of surfactants on electrocatalytic performance of copper nanoparticles for hydrogen evolution reaction. J Mol Liq 222:1068–1075

    CAS  Google Scholar 

  69. Palenzuela CLM, Luxa J, Sofer Z, Pumera M (2018) MoSe2 dispersed in stabilizing surfactant media: effect of the surfactant type and concentration on electron transfer and catalytic properties. ACS Appl Mater Interfaces 10:17820–17826

    Google Scholar 

  70. Zcan A (2014) Synergistic effect of lithium perchlorate and sodium hydroxide in the preparation of electrochemically treated pencil graphite electrodes for selective and sensitive bisphenol a detection in water samples. Electroanalysis 26:1631–1639

    Google Scholar 

  71. Tang L, Huan K, Deng D, Han L, Zeng Z, Luo L (2020) Glucose sensor based on Pd nanosheets deposited on Cu/Cu2O nanocomposites by galvanic replacement. Colloids Surf B 188:110797

    CAS  Google Scholar 

  72. Chen Z, Rao D, Zhang J, Liu Y, Wang Y, Liu C, Hu W, Deng Y (2019) Highly active and CO-tolerant trimetallic NiPtPd hollow nanocrystals as electrocatalysts for methanol electro-oxidation reaction. ACS Appl Energy Mater 2:4763–4773

    CAS  Google Scholar 

  73. Xue J, Han G, Ye W, Sang Y, Li H, Guo P, Zhao XS (2016) Structural regulation of PdCu2 nanoparticles and their electrocatalytic performance for ethanol oxidation. ACS Appl Mater Interfaces 8:34497–34505

    CAS  PubMed  Google Scholar 

  74. Yuan H, Guo D, Qiu X, Zhu W, Chen L (2009) Influence of metal oxides on Pt catalysts for methanol electrooxidation using electrochemical impedance spectroscopy. J Power Sources 188:8–13

    CAS  Google Scholar 

  75. Ruiz-Camacho B, Medina-Ramı´rez A, Aguilera MV, Minchaca-Mojica JI (2019) Pt supported on mesoporous material for methanol and ethanol oxidation in alkaline medium. Int J Hydrogen Energy 44:12365–12373

    CAS  Google Scholar 

  76. Zhang H, Wang H, Cao J, Ni Y (2017) Hierarchical Cu–Ni–Pt dendrites: two-step electrodeposition and highly catalytic performances. J Alloy Comp 698:654–661

    CAS  Google Scholar 

  77. Busó-Rogero C, Solla-Gullón J, Vidal-Iglesias FJ, Herrero E, Feliu JM (2016) Oxidation of ethanol on platinum nanoparticles: surface structure and aggregation effects in alkaline medium. J Solid State Electrochem 20:1095–1106

    Google Scholar 

  78. Fan J, Qi K, Zhang L, Zhang H, Yu S, Cui X (2017) Engineering Pt/Pd interfacial electronic structures for highly efficient hydrogen evolution and alcohol oxidation. ACS Appl Mater Interfaces 9:18008–18014

    CAS  PubMed  Google Scholar 

  79. Ojani R, Raoof JB, Hasheminejad E (2013) One-step electroless deposition of Pd/Pt bimetallic microstructures by galvanic replacement on copper substrate and investigation of its performance for the hydrogen evolution reaction. Int J Hydrogen Energy 38:92–99

    CAS  Google Scholar 

  80. Rivera-Lugo YY, Salazar-Gastélum MI, López-Rosas DM, Reynoso-Soto EA, Pérez-Sicairos S, Velraj S, Flores-Hernández JR, Félix-Navarro RM (2018) Effect of template, reaction time, and platinum concentration in the synthesis of PtCu/CNT catalyst for PEMFC applications. Energy 148:561–570

    CAS  Google Scholar 

  81. Yang H, Dai L, Xu D, Fang J, Zou S (2010) Electrooxidation of methanol and formic acid on PtCu nanoparticles. Electrochim Acta 55:8000–8004

    CAS  Google Scholar 

  82. Geng J, Zhu Z, Bai X, Li F, Chen J (2020) Hot-injection synthesis of PtCu3 concave nanocubes with high-index facets for electrocatalytic oxidation of methanol and formic acid. ACS Appl Energy Mater 3:1010–1016

    CAS  Google Scholar 

  83. Xiao M, Li S, Zhao X, Zhu J, Yin M, Liu C, Xing W (2014) Enhanced catalytic performance of composition-tunable PtCu nanowire networks for methanol electrooxidation. ChemCatChem 6:2825–2831

    CAS  Google Scholar 

  84. Kuang Y, Cai Z, Zhang Y, He D, Yan X, Bi Y, Li Y, Li Z, Sun X (2014) Ultrathin dendritic Pt3Cu triangular pyramid caps with enhanced electrocatalytic activity. ACS Appl Mater Interfaces 6:17748–17752

    CAS  PubMed  Google Scholar 

  85. Lee YW, Han SW, Lee KW (2018) Site-selectively Pt-decorated PdPt bimetallic nanosheets characterized by electrocatalytic property for methanol oxidation. Mater Chem Phys 214:201–208

    CAS  Google Scholar 

  86. Lv H, Sun L, Lopes A, Xu D, Liu B (2019) Insights into compositional and structural effects of bimetallic hollow mesoporous nanospheres toward ethanol oxidation electrolcatalysis. J Phys Chem Lett 10:5490–5498

    CAS  PubMed  Google Scholar 

  87. Lv H, Wang Y, Xu D, Liu B (2021) Engineering porous architectures in multicomponent PdCuBP mesoporous nanospheres for electrocatalytic ethanol oxidation. Nano Res 14:3274–3281

    CAS  Google Scholar 

  88. Lv H, Sun L, Xu D, Henzie J, Yamauchi Y, Liu B (2019) Mesoporous palladium–boron alloy nanospheres. J Mater Chem A7:24877–24883

    Google Scholar 

  89. Holm T, Sunde S, Seland F, Harrington DA (2019) Understanding reaction mechanisms using dynamic electrochemical impedance spectroscopy: methanol oxidation on Pt. Electrochim Acta 323:134764

    CAS  Google Scholar 

  90. Siwal S, Matseke S, Mpelane S, Hooda N, Nandi D, Mallick K (2017) Palladium-polymer nanocomposite: an anode catalyst for the electrochemical oxidation of methanol. Int J Hydrogen Energy 42:23599–23605

    CAS  Google Scholar 

  91. Yu J, Chen F, Tang Q, Gebremariam TT, Wang J, Gong X, Wang X (2019) Ag-Modified Cu foams as three-dimensional anodes for rechargeable zinc−air batteries. ACS Appl Nano Mater 2:2679–2688

    CAS  Google Scholar 

  92. Shah AH, Wang Y, Woldu AR, Lin L, Iqbal M, Cahen D, He T (2018) Revisiting electrochemical reduction of CO2 on Cu electrode: where do we stand about the intermediates? J Phys Chem C 122:18528–18536

    CAS  Google Scholar 

  93. Gorle DB, Kumman VV, Kulandainathan MA (2017) Highly efficient, large surface area and spherically shaped Pt particles deposited electrolytically synthesized graphene for methanol oxidation with impedance spectroscopy. Int J Hydrogen Energy 42:16258–16268

    CAS  Google Scholar 

  94. Liang ZX, Zhao TS, Xu JB, Zhu LD (2009) Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim Acta 54:2203–2208

    CAS  Google Scholar 

  95. Holm T, Dahlstrøm PK, Sunde S, Seland F, Harrington DA (2019) Dynamic electrochemical impedance study of methanol oxidation at Pt at elevated temperatures. Electrochim Acta 295:139–147

    CAS  Google Scholar 

Download references

Acknowledgements

The authors have a deep gratitude towards the University of Zanjan Research Council for the support of this work.

Author information

Authors and Affiliations

Authors

Contributions

Mohammad Ali Kamyabi: Conceptualization, Supervision, Methodology, Writing – review & editing. Leila Sharifi Khangheshlaghi: Validation, Investigation Salma Jadali: Validation, Investigation, Writing – original draft, Writing – review & editing.

Corresponding author

Correspondence to Mohammad Ali Kamyabi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 256 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamyabi, M.A., Sharifi Khangheshlaghi, L. & Jadali, S. Efficient methanol electrooxidation on activated pencil graphite electrode modified with PtCu catalyst. J Appl Electrochem 53, 919–933 (2023). https://doi.org/10.1007/s10800-022-01826-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01826-3

Keywords

Navigation