Skip to main content

Advertisement

Log in

Synthesis of AuxCo100 − x/MWCNT nanoparticles as an efficient anode electrocatalyst for borohydride oxidation in alkaline medium

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, we report the successful synthesis of multiwalled carbon nanotubes supported by gold-cobalt (AuxCo100 − x/MWCNT) nanoparticles to develop a novel electrocatalyst for anodic application in direct borohydride fuel cells. X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, field emission scanning electron microscopy and transmission electron microscopy are employed to examine the crystalline structure, chemical composition and morphology of the prepared electrocatalysts. Cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry tests are used for electrocatalytic characterizations of developed electrocatalysts. Using AuxCo100 − x/MWCNT electrocatalyst, the fundamental kinetics parameters of electrocatalytic performance (current density, exchanged electrons number and apparent activation energy) for borohydride electrooxidation are investigated. Results reveal that among all bimetallic electrocatalysts, the Au74Co26/MWCNT electrocatalyst exhibits the highest specific activity (24.15 mA.cm− 2) and Au49Co51/MWCNT shows the highest mass activity (1127.03 mA.mg− 1) for \({BH}_{4}^{-}\) electrooxidation. The lowest apparent activation energy (8.22 kJmol− 1) and smallest charge transfer resistance (134.9 Ω) suggest the best electrocatalytic activity of Au74Co26/MWCNT electrocatalyst toward borohydride oxidation. The exchanged electron number for the Au74Co26/MWCNT electrocatalyst for borohydride electrooxidation at \(303 \text{K}\)is estimated as 4.70.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. de Leon CP, Walsh FC, Rose A, Lakeman JB, Browning DJ, Reeve RW (2007) A direct borohydride—acid peroxide fuel cell. J Power Sour 164:441–448. https://doi.org/10.1016/j.jpowsour.2006.10.069

    Article  CAS  Google Scholar 

  2. Cheng H, Scott K (2006) Influence of operation conditions on direct borohydride fuel cell performance. J Power Sour 160:407–412. https://doi.org/10.1016/j.jpowsour.2006.01.097

    Article  CAS  Google Scholar 

  3. Atwan MH, Macdonald CL, Northwood DO, Gyenge EL (2006) Colloidal au and Au-alloy catalysts for direct borohydride fuel cells: electrocatalysis and fuel cell performance. J Power Sour 158(1):36–44. https://doi.org/10.1016/j.jpowsour.2005.09.054

    Article  CAS  Google Scholar 

  4. Li ZP, Liu BH, Arai K, Asaba K, Suda S (2004) Evaluation of alkaline borohydride solutions as the fuel for fuel cell. J Power Sour 158:36–44. https://doi.org/10.1016/j.jpowsour.2003.08.017

    Article  CAS  Google Scholar 

  5. Dey S, Pramanik S, Chakraborty P, Rana DK, Basu S (2022) An easy synthesis of carbon-supported silver–cobalt bimetallic nanoparticles to study the electrocatalytic performance in alkaline borohydride fuel cell. J Appl Electrochem 52:247–258. https://doi.org/10.1007/s10800-021-01641-2

    Article  CAS  Google Scholar 

  6. Indig ME, Snyder RN (1962) Sodium borohydride, an interesting anodic fuel(1). J Electrochem Soc 109(11):1104. https://doi.org/10.1149/1.2425247

    Article  CAS  Google Scholar 

  7. Duan D, Feng J, You X, Zhou X, Wang Y, Chen L, Liu S (2021) Evaluation of Co–Au bimetallic nanoparticles as anode electrocatalyst for direct borohydride-hydrogen peroxide fuel cell. Ionics 27:3521–3532. https://doi.org/10.1007/s11581-021-04115-9

    Article  CAS  Google Scholar 

  8. Yi L, Liu L, Liu X, Wang X, Yi W, He P, Wang X (2012) Carbon-supported Pt–Co nanoparticles as anode catalyst for direct borohydride-hydrogen peroxide fuel cell: electrocatalysis and fuel cell performance. Int J Hydrog Energy 37:12650–12658. https://doi.org/10.1016/j.ijhydene.2012.06.065

    Article  CAS  Google Scholar 

  9. Gyenge E (2004) Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells. Electrochim Acta 49:965–978. https://doi.org/10.1016/j.electacta.2003.10.008

    Article  CAS  Google Scholar 

  10. Xu CW, Wang H, Shen PK, Jiang SP (2007) Highly ordered pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells. Adv Mater 19(23):4091–4304. https://doi.org/10.1002/adma.200602911

    Article  CAS  Google Scholar 

  11. Zhang Y, Janyasupab M, Liu CW, Li X, Xu J, Liu CC (2012) Three dimensional PtRh alloy porous nanostructures: tuning the atomic composition and controlling the morphology for the application of direct methanol fuel cells. Adv Funct Mater 22(17):3570–3575. https://doi.org/10.1002/adfm.201200678

    Article  CAS  Google Scholar 

  12. Evans GE, Kordesch KV (1967) Hydrazine-air fuel cells: hydrazine-air fuel cells emerge from the laboratory. Science 158(3805):1148–1152. https://doi.org/10.1126/science.158.3805.1148

    Article  CAS  PubMed  Google Scholar 

  13. Han SB, Song YJ, Lee YW, Ko AR, Oh JK, Park KW (2011) High-performance hydrogen fuel cell using nitrate reduction reaction on a non-precious catalyst. Chem Commun 47(12):3496–3498. https://doi.org/10.1039/C0CC05534D

    Article  CAS  Google Scholar 

  14. Yu SS, Lee TH, Oh TH (2022) Ag–Ni nanoparticles supported on multiwalled carbon nanotubes as a cathode electrocatalyst for direct borohydride–hydrogen peroxide fuel cells. Fuel 315:123151. https://doi.org/10.1016/j.fuel.2022.123151

    Article  CAS  Google Scholar 

  15. Santos DMF, Sequeira CAC (2010) Cyclic voltammetry investigation of borohydride oxidation at a gold electrode. Electrochim Acta 55:6775–6781. https://doi.org/10.1016/j.electacta.2010.05.091

    Article  CAS  Google Scholar 

  16. Nagle LC, Rohan JF (2011) Nanoporous gold anode catalyst for direct borohydride fuel cell. Int J Hydrog Energy 36(16):10319–10326. https://doi.org/10.1016/j.ijhydene.2010.09.077

    Article  CAS  Google Scholar 

  17. Martins M, Šljukić B, Metin Ö, Sevim M, Sequeira CA, Şener T, Santos DM (2017) Bimetallic PdM (M = fe, ag, au) alloy nanoparticles assembled on reduced graphene oxide as catalysts for direct borohydride fuel cells. J Alloys Compd 718:204–214. https://doi.org/10.1016/j.jallcom.2017.05.058

    Article  CAS  Google Scholar 

  18. Oh TH (2021) Gold-based bimetallic electrocatalysts supported on multiwalled carbon nanotubes for direct borohydride–hydrogen peroxide fuel cell. Renew Energy 163:930–938. https://doi.org/10.1016/j.renene.2020.09.028

    Article  CAS  Google Scholar 

  19. He P, Wang X, Liu Y, Liu X, Yi L (2012) Comparison of electrocatalytic activity of carbon-supported Au–M (M = fe, Co, Ni, Cu and Zn) bimetallic nanoparticles for direct borohydride fuel cells. Int J Hydrog Energy 37(16):11984–11993. https://doi.org/10.1016/j.ijhydene.2012.05.054

    Article  CAS  Google Scholar 

  20. Oh TH, Jang B, Kwon S (2014) Electrocatalysts supported on multiwalled carbon nanotubes for direct borohydride–hydrogen peroxide fuel cell. Int J Hydrog Energy 39(13):6977–6986. https://doi.org/10.1016/j.ijhydene.2014.02.117

    Article  CAS  Google Scholar 

  21. Yi L, Wei W, Zhao C, Tian L, Liu J, Wang X (2015) Enhanced activity of Au–Fe/C anodic electrocatalyst for direct borohydride-hydrogen peroxide fuel cell. J Power Sour 285:325–333. https://doi.org/10.1016/j.jpowsour.2015.03.118

    Article  CAS  Google Scholar 

  22. He P, Wang X, Fu P, Wang H, Yi L (2011) The studies of performance of the au electrode modified by Zn as the anode electrocatalyst of direct borohydride fuel cell. Int J Hydrog Energy 36(15):8857–8863. https://doi.org/10.1016/j.ijhydene.2011.04.128

    Article  CAS  Google Scholar 

  23. Yan S, Gao L, Zhang S, Gao L, Zhang W, Li Y (2013) Investigation of AuNi/C anode catalyst for direct methanol fuel cells. Int J Hydrog Energy 38(29):12838–12846. https://doi.org/10.1016/j.ijhydene.2013.07.102

    Article  CAS  Google Scholar 

  24. Yin D, Tang J, Bai R, Yin S, Jiang M, Kan Z, Li H, Wang F, Li C (2021) Cobalt phosphide (Co2P) with notable electrocatalytic activity designed for sensitive and selective enzymeless bioanalysis of hydrogen peroxide. Nanoscale Res Lett 16(1):1–10. https://doi.org/10.1186/s11671-020-03469-9

    Article  CAS  Google Scholar 

  25. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solution. NACE

    Google Scholar 

  26. Pei F, Wang Y, Wang X, He P, Chen Q, Wang X, Wang H, Yi L, Guo J (2010) Performance of supported Au–Co alloy as the anode catalyst of direct borohydride-hydrogen peroxide fuel cell. Int J Hydrog Energy 35(15):8136–8142. https://doi.org/10.1016/j.ijhydene.2010.01.016

    Article  CAS  Google Scholar 

  27. Duan D, Liang J, Liu H, You X, Wei H, Wei G, Liu S (2015) The effective carbon supported core–shell structure of Ni@ au catalysts for electro-oxidation of borohydride. Int J Hydrog Energy 40(1):488–500. https://doi.org/10.1016/j.ijhydene.2014.10.101

    Article  CAS  Google Scholar 

  28. Duan D, Liu H, You X, Wei H, Liu S (2015) Anodic behavior of carbon supported Cu@ Ag core–shell nanocatalysts in direct borohydride fuel cells. J Power Sour 293:292–300. https://doi.org/10.1016/j.jpowsour.2015.05.086

    Article  CAS  Google Scholar 

  29. Wang Y, Lu X, Liu Y, Deng Y (2013) Silver supported on Co3O4 modified carbon as electrocatalyst for oxygen reduction reaction in alkaline media. Electrochem Commun 31:108–111. https://doi.org/10.1016/j.elecom.2013.03.017

    Article  CAS  Google Scholar 

  30. Yang F, Cheng K, Wang G, Cao D (2015) Preparation of au nanosheets supported on ni foam and its electrocatalytic performance towards NaBH4 oxidation. Electrochim Acta 159:111–115. https://doi.org/10.1016/j.electacta.2015.01.171

    Article  CAS  Google Scholar 

  31. Tamašauskaitė-Tamašiūnaitė L, Balčiūnaitė A, Šimkūnaitė D, Selskis A (2012) Self-ordered titania nanotubes and flat surfaces as a support for the deposition of nanostructured Au–Ni catalyst: enhanced electrocatalytic oxidation of borohydride. J Power Sour 202:85–91. https://doi.org/10.1016/j.jpowsour.2011.11.030

    Article  CAS  Google Scholar 

  32. Chen D, Liu S, Li J, Zhao N, Shi C, Du X, Sheng J (2009) Nanometre Ni and core/shell Ni/Au nanoparticles with controllable dimensions synthesized in reverse microemulsion. J Alloys Compd 475(1–2):494–500. https://doi.org/10.1016/j.jallcom.2008.07.115

    Article  CAS  Google Scholar 

  33. Dey S, Chakraborty P, Rana DK, Pramanik S, Basu S (2021) Surfactant-free synthesis of carbon-supported silver (Ag/C) nanobars as an efficient electrocatalyst for alcohol tolerance and oxidation of sodium borohydride in alkaline medium. SN Appl Sci 3(6):1–12. https://doi.org/10.1007/s42452-021-04601-9

    Article  CAS  Google Scholar 

  34. Hansu TA, Caglar A, Sahin O, Kivrak H (2020) Hydrolysis and electrooxidation of sodium borohydride on novel CNT supported CoBi fuel cell catalyst. Mater Chem Phys 239:122031. https://doi.org/10.1016/j.matchemphys.2019.122031

    Article  CAS  Google Scholar 

  35. Cui N, Luo JL (1998) Effects of oxide additions on electrochemical hydriding and dehydriding behavior of Mg2Ni-type hydrogen storage alloy electrode in 6 M KOH solution. Electrochim Acta 44:711–720. https://doi.org/10.1016/S0013-4686(98)00235-7

    Article  CAS  Google Scholar 

  36. Abdel-Rehim SS, Khaled KF, Abd-Elshafi NS (2006) Electrochemical frequency modulation as a new technique for monitoring corrosion inhibition of iron in acid media by new thiourea derivative. Electrochim Acta 51(16):3269–3277. https://doi.org/10.1016/j.electacta.2005.09.018

    Article  CAS  Google Scholar 

  37. Liu BH, Li ZP (2009) A review: hydrogen generation from borohydride hydrolysis reaction. J Power Sour 187(2):527–534. https://doi.org/10.1016/j.jpowsour.2008.11.032

    Article  CAS  Google Scholar 

  38. Zhang D, Ye K, Cheng K, Cao D, Yin J, Xu Y, Wang G (2014) High electrocatalytic activity of cobalt–multiwalled carbon nanotubes–cosmetic cotton nanostructures for sodium borohydride electrooxidation. Int J Hydrog Energy 39(18):9651–9657. https://doi.org/10.1016/j.ijhydene.2014.04.113

    Article  CAS  Google Scholar 

  39. Birry L, Lasia A (2004) Studies of the hydrogen evolution reaction on raney nickel—molybdenum electrodes. J Appl Electrochem 34(7):735–749. https://doi.org/10.1023/B:JACH.0000031161.26544.6a

    Article  CAS  Google Scholar 

  40. Wang K, Lu J, Zhuang L (2005) Direct determination of diffusion coefficient for borohydride anions in alkaline solutions using chronoamperometry with spherical au electrodes. J Electroanal Chem 585(2):191–196. https://doi.org/10.1016/j.jelechem.2005.08.009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the centre of excellence (COE), NIT Durgapur, for the FESEM facility.

Funding

The authors acknowledge the DST&BT project (Project no. 326(Sanc.)/ST/P/S&T 16G-21/2018), Govt. of West Bengal, for financial support during this work.

Author information

Authors and Affiliations

Authors

Contributions

CKR: Investigation, Formal analysis, Writing—original draft, Validation. SD: Resources, Formal analysis, Validation. MH: Writing—original draft, Validation. RK: Resources, Validation. SB: Resources, Validation AKM: Supervision, Conceptualization, Methodology, Visualization, Validation, Project administration.

Corresponding author

Correspondence to Ajit Kumar Meikap.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This declaration is “not applicable”.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raul, C.K., Dey, S., Halder, M. et al. Synthesis of AuxCo100 − x/MWCNT nanoparticles as an efficient anode electrocatalyst for borohydride oxidation in alkaline medium. J Appl Electrochem 53, 977–990 (2023). https://doi.org/10.1007/s10800-022-01824-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01824-5

Keywords

Navigation