Skip to main content

Advertisement

Log in

Investigation of carbon-supported Ni@Ag core-shell nanoparticles as electrocatalyst for electrooxidation of sodium borohydride

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Carbon-supported Ni@Ag core-shell nanoparticles were synthesized and used as the anode electrocatalyst for direct borohydride-hydrogen peroxide fuel cell (DBHFC). The morphology, structure, and composition of the as-prepared electrocatalysts are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS). Electrochemical characterizations are performed by cyclic voltammetry (CV), chronoamperometry (CA), linear scan voltammetry with rotating disk electrode (LSV RDE), and fuel cell test. The catalytic behaviors and main kinetic parameters (e.g., Tafel slope, number of electrons exchanged, exchange current density, and apparent activation energy) toward BH 4 oxidation on Ag/C and Ni@Ag/C electrocatalysts are determined. Results show that the as-prepared nanoparticles have a core-shell structure with the average size approximately 13 nm. The kinetics of NaBH4 oxidation is faster for Ni@Ag/C than that for Ag/C. Among the as-prepared catalysts, the highest transition electron value and the lowest apparent activation energy are obtained on Ni1@Ag1/C; the values are 4.8 and 20.23 kJ mol−1, respectively. The DBHFC using Ni1@Ag1/C as anode electrocatalyst and Pt mesh (1 cm2) as cathode electrode obtains the maximum anodic power density as high as 8.54 mW cm−2 at a discharge current density of 8.42 mA cm−2 at 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Feng RX, Dong H, Wang YD, Ai XP, Cao YL, Yang HX (2005) A simple and high efficient direct borohydride fuel cell with MnO2-catalyzed cathode. Electrochem Commun 7:449–452

    Article  CAS  Google Scholar 

  2. Peled E, Livshits V, Duvdevani T (2002) High-power direct ethylene glycol fuel cell (DEGFC) based on nanoporous proton-conducting membrane (NP-PCM). J Power Sources 106:245–248

    Article  CAS  Google Scholar 

  3. Ma J, Sahai Y, Buchheit RG (2010) Direct borohydride fuel cell using Ni-based composed anodes. J Power Sources 195:4709–4713

    Article  CAS  Google Scholar 

  4. Chatenet M, Micoud F, Roche I, Chainet E (2006) Kinetics of sodium borohydride direct oxidation oxygen reduction sodium hydroxide electrolyte. Part I: BH4 electro-oxidation on Au and Ag catalyst. Electrochim Acta 51:5459–5467

    Article  CAS  Google Scholar 

  5. Cao D, Gao Y, Wang G, Miao R, Liu Y (2010) A direct NaBH4-H2O2 fuel cell using Ni foam supported Au nanoparticles as electrodes. Int J Hydrogen Energy 35:807–813

    Article  CAS  Google Scholar 

  6. Liu BH, Li ZP, Suda S (2004) Electrocatalysts for the anodic oxidation of borohydrides. Electrochim Acta 49:3097–3105

    Article  CAS  Google Scholar 

  7. Cao D, Chen D, Lan J, Wang G (2009) An alkaline direct NaBH4-H2O2 fuel cell with high power density. J Power Sources 190:346–350

    Article  CAS  Google Scholar 

  8. Gardiner JA, Collat JW (1965) Kinetics of the stepwise hydrolysis of tetrahydroborate ion. J Am Chem Soc 10:1692–1700

    Article  Google Scholar 

  9. Kim JH, Kim HS, Kang YM, Song MS, Rajendran S, Han SC, Jung DH, Lee JY (2004) Carbon-supported and unsupported Pt anodes for direct borohydride liquid fuel cells. J Electrochem Soc 151:A1039–A1043

    Article  CAS  Google Scholar 

  10. Concha BM, Chatenet M (2009) Direct oxidation of sodium borohydride on Pt, Ag and alloyed Pt-Ag electrodes in basic media.PartI: Bulk electrodes. Electrochim Acta 54:6119–6229

    Article  Google Scholar 

  11. Concha BM, Chatenet M (2009) Direct oxidation of sodium borohydride on Pt, Ag and alloyed Pt-Ag electrodes in basic media.PartII: Carbon-supported nanopaticles. Electrochim Acta 54:6130–6139

    Article  Google Scholar 

  12. Cenk C, San FGB, Sarac HI (2008) Effects of operation conditions on direct borohydride fuel cell performance. J Power Sources 185:197–201

    Article  Google Scholar 

  13. Yang JQ, Liu BH, Wu S (2009) Carbon-supported Pd catalysts: Influences of nanostructure on their catalytic performances for borohydride electrochemical oxidation. J Power Sources 194:824–829

    Article  CAS  Google Scholar 

  14. Liu BH, Li ZP, Suda S (2003) Anodic oxidation of alkali borohydrides catalyzed by nickel. J Electrochem Soc 150:A398–A402

    Article  CAS  Google Scholar 

  15. Wang KL, Lu JT, Zhuang L (2007) A current decomposition study of the borohydride oxidation reaction at Ni electrodes. J Phys Chem C 111:7456–7462

    Article  CAS  Google Scholar 

  16. Duan DH, Liu SB, Sun YP (2012) Analysis of the kinetics of borohydride oxidation in Cu anode for direct borohydride fuel cell. J Power Sources 210:198–203

    Article  CAS  Google Scholar 

  17. Zhang D, Ye K, Cao D, Wang B, Cheng K, Li Y, Wang G, Xu Y (2015) Co@MWNTs-Plastic: A novel electrode for NaBH4 oxidation. Electrochim Acta 156:102–107

    Article  CAS  Google Scholar 

  18. Zhang D, Ye K, Cheng K, Cao D, Yin J, Xu Y, Wang G (2014) High electrocatalytic activity of cobalt–multiwalled carbon nanotubes–cosmetic cotton nanostructures for sodium borohydride electrooxidation. Int J Hydrogen Energy 39:9651–9657

    Article  CAS  Google Scholar 

  19. Santos DMF, Sequeira CAC (2010) Cyclic voltammetry investigation of borohydride oxidation at a gold electrode. Electrochim Acta 55:6775–6781

    Article  CAS  Google Scholar 

  20. Cheng H, Scott K (2006) Determination of kinetic parameters for borohydride oxidation on a rotating Au disk electrode. Electrochim Acta 51:3429–3433

    Article  CAS  Google Scholar 

  21. Sanli E, Celikkan H, Uysal BZ, Aksu ML (2006) Anodic behavior of Ag metal electrode in direct borohydride fuel cells. Int J Hydrogen Energy 31:1920–924

    Article  CAS  Google Scholar 

  22. Liu BH, Li ZP (2009) A review: hydrogen generation from borohydride hydrolysis reaction. J Power Sources 187:527–534

    Article  CAS  Google Scholar 

  23. Hosseini MG, Abdolmaleki M (2013) Synthesis and characterization of porous nanostructured Ni/PdNi electrode towards electrooxidation of borohydride. Int J Hydrogen Energy 38:5449–5456

    Article  CAS  Google Scholar 

  24. He PY, Wang Y, Wang XY, Pei F, Wang H, Liu L, Yi LH (2011) Investigation of carbon supported Au-Ni bimetallic nanoparticles as electrocatalyst for direct borohydride fuel cell. J Power Sources 196:1042–1047

    Article  CAS  Google Scholar 

  25. Geng XY, Zhang HM, Yea W, Ma YW, Zhong HX (2008) Ni-Pt/C as anode electrocatalyst for a direct borohydride fuel cell. J Power Sources 185:627–632

    Article  CAS  Google Scholar 

  26. Wang GJ, Gao YZ, Wang ZB, Du CY, Wang JJ, Yin GP (2010) Investigation of PtNi/C anode electrocatalysts for direct borohydride fuel cell. J Power Sources 195:185–189

    Article  CAS  Google Scholar 

  27. Šljukić B, Milikić J, Santos DMF, Sequeira CAC (2013) Carbon-supported Pt0.75M0.25 (M= Ni or Co) electrocatalysts for borohydride oxidation. Electrochim Acta 107:577–583

    Article  Google Scholar 

  28. Feng RX, Dong H, Cao YL, Ai XP, Yang HX (2007) Agni-catalyzed anode for direct borohydride fuel cells. Int J Hydrogen Energy 32:4544–4549

    Article  CAS  Google Scholar 

  29. Goodman DW (1990) Chemistry on monolayer metallic films. Ultramicroscopy 34:1–9

    Article  CAS  Google Scholar 

  30. Chen DH, Wang SR (2006) Protective agent-free synthesis of Ni-Ag core-shell nanoparticles. Mater Chem Phys 100:468–471

    Article  CAS  Google Scholar 

  31. Yuan QB, Duan DH, Ma YH, Wei GQ, Zhang ZL, Hao XG, Liu SB (2014) Performance of nano-nickel core wrapped with Pt crystalline thin film for methanol electro-oxidation. J Power Sources 245:886–891

    Article  CAS  Google Scholar 

  32. Lin R, Cao CH, Zhao TT, Huang Z, Li B, Wieckowski A, Ma JX (2013) Synthesis and application of core–shell Co@Pt/C electrocatalysts for proton exchange membrane fuel cells. J Power Sources 223:190–198

    Article  CAS  Google Scholar 

  33. Zhou W, Lee JY (2007) Highly active core–shell Au@Pd catalyst for formic acid electrooxidation. Electrochem Commun 9:1725–1729

    Article  CAS  Google Scholar 

  34. Sarkar A, Manthiram A (2010) Synthesis of Pt@Cu core-shell nanoparticles by galvanic displacement of Cu by Pt4 + ions and their application as electrocatalysts for oxygen reduction reaction in fuel cells. J Phys Chem C 114:4725–4732

    Article  CAS  Google Scholar 

  35. Duan DH, Liang JW, Liu HH, You X, Wei HK, Wei GQ, Liu SB (2015) The effective carbon supported core–shell structure of Ni@Au catalysts for electro-oxidation of borohydride. Int J Hydrogen Energy 40:488–500

    Article  CAS  Google Scholar 

  36. Duan D, Liu H, You X, Wei H, Liu S (2015) Anodic behavior of carbon supported Cu@Ag core-shell nanocatalysts in direct borohydride fuel cells. J Power Sources 293:292–300

    Article  CAS  Google Scholar 

  37. Baletto F, Mottet C, Rapallo A, Rossi G, Ferrando R (2004) Growth and energetic stability of AgNi core-shell clusters. Surf Sci 566–568:192–196

    Article  Google Scholar 

  38. Burstein GT, Newman RC (1980) Anodic behavior of scratched silver electrodes in alkaline media. Electrochim Acta 25:1009–1014

    Article  CAS  Google Scholar 

  39. Sanli E, Uysal BZ, Aksu ML (2008) The oxidation of NaBH4 on electrochemically treated silver electrodes. Int J Hydrogen Energy 33:2098–2099

    Article  Google Scholar 

  40. Atwan MH, Northwood DO, Gyenge EL (2007) Evaluation of colloidal Ag and Ag-alloys as anode electrocatalysts for direct borohydride fuel cells. Int J Hydrogen Energy 32:3116–3125

    Article  CAS  Google Scholar 

  41. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley and Sons, New York, pp 337–341

    Google Scholar 

  42. Lai Y, Li Y, Jiang L, Xu W, Lv X, Li J, Liu Y (2012) Electrochemical behaviors of co-deposited Pb/Pb-MnO2 composite anode in sulfuric acid solution - Tafel and EIS investigations. J Electroanal Chem 671:16–23

    Article  CAS  Google Scholar 

  43. Gyenge EL (2005) Dimensionless numbers and correlating equations for the analysis of the membrane-gas diffusion electrode assembly in polymer electrolyte fuel cells. J Power Sources 152:105–121

    Article  CAS  Google Scholar 

  44. Mirkin MV, Yang H, Bard AJ (1992) Borohydride oxidation at a gold electrode. J Electrochem Soc 139:2212–2217

    Article  CAS  Google Scholar 

  45. Burstein GT (2005) A hundred years of Tafel’s Equation: 1905–2005. Corros Sci 47:2858–2870

    Article  CAS  Google Scholar 

  46. Liu DM, Huang WJ, Si TZ, Zhang QA (2013) Hydrogen storage properties of LiBH4 destabilized by SrH2. J Alloys Compds 551:8–11

    Article  CAS  Google Scholar 

  47. Ivan S, Jelena K, Jadranka M, Biljana S, Zorica K-P, Slavko M, Scepan M (2016) Radiolitically synthesized nano Ag/C catalysts for oxygen reduction and borohydride oxidation reactions in alkaline media, for potential applications in fuel cells. Energy 101:79–90

    Article  Google Scholar 

  48. de León CP, Walsh FC, Patrissi CJ, Medeiros MG, Bessette RR, Reeve RW, Lakeman JB, Rose A, Browning D (2008) A direct borohydride–peroxide fuel cell using a Pd/Ir alloy coated microfibrous carbon cathode. Electrochem Commun 10:1610–1613

    Article  Google Scholar 

  49. Long NV, Hien TD, Asaka T, Ohtaki M, Nogami M (2011) Synthesis and characterization of Pt-Pd alloy and core-shell bimetallic nanoparticles for direct methanol fuel cells (DMFCs): Enhanced electrocatalytic properties of well-shaped core-shell morphologies and nanostructures. Int J Hydrogen Energy 36:8478–8491

    Article  Google Scholar 

  50. Kuhnen CA (1996) Magnetic and electronic structure of Ni/Ag bilayers. Solid State Commun 98:123–128

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Natural Science Foundation of Shanxi Province (No. 2015011028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghong Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, D., Wang, Q., Liu, H. et al. Investigation of carbon-supported Ni@Ag core-shell nanoparticles as electrocatalyst for electrooxidation of sodium borohydride. J Solid State Electrochem 20, 2699–2711 (2016). https://doi.org/10.1007/s10008-016-3285-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3285-5

Keywords

Navigation