Skip to main content

Advertisement

Log in

Polyaniline-tungsten oxide nanocomposite co-electrodeposited onto anodized graphene oxide nanosheets/graphite electrode for high performance supercapacitor device

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Polyaniline-tungsten oxide nanocomposite onto anodized graphene oxide nanosheets (PANI-WO3/GO NSs)/graphite electrode was easily fabricated by pulse reverse co-electrodeposition of polyaniline and tungsten oxide nanocomposite onto previously anodized graphene oxide nanosheets/graphite electrode. SEM as well as BET investigations proved that the PANI-WO3 nanocomposite with high surface area was uniformly co-electrodeposited onto the anodized graphene oxide nanosheets/graphite electrode. The supercapacitive performance of the PANI-WO3/GO NSs/graphite electrode was carefully evaluated by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS). The electrochemical measurements confirmed the WO3 and polyaniline possess synergistic effect in capacitive behavior of the modified electrode and the other hand graphene oxide nanosheets with high surface area increase adhesion of PANI-WO3 nanocomposite to the graphite electrode, leading to significant supercapacitive activity and long cyclic life. The PANI-WO3/GO NSs/graphite electrode showed remarkable specific capacitance of about 677 F g−1, a superb energy density of 61.1 mWh g−1 and an appropriate power density of 200 mW g−1 at a current density of 2.0 A g−1 in 1.0 M aqueous H2SO4 electrolyte. The all solid-state symmetric supercapacitor device based on PANI-WO3/GO NSs/Graphite electrodes and PVA/H2SO4 gel electrolyte displayed 82% specific capacitance retention upto 1000 continuous charge–discharge cycles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Singh DL, Ghosh TK, Mishra V, et al (2022) Three-dimensional lanthanide-based nanoporous metal–organic frameworks for high-performance supercapacitors. ACS Appl Nano Mater

  2. Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8:702–730

    Article  CAS  Google Scholar 

  3. Huang B, Wu X (2021) Dispersed nickel-cobalt double metal hydroxide self-assembled with polystyrene sulfonic acid polyelectrolyte for the preparation of carbon solid solid supercapacitors with wide temperature range and long cycle stability. Thin Solid Films 734:138838

    Article  CAS  Google Scholar 

  4. Ansari MZ, Ansari SA, Kim S-H (2022) Fundamentals and recent progress of Sn-based electrode materials for supercapacitors: a comprehensive review. J Energy Storage 53:105187

    Article  Google Scholar 

  5. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27

    Article  CAS  Google Scholar 

  6. Raza W, Ali F, Raza N et al (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473

    Article  CAS  Google Scholar 

  7. Yavuz A, Ozdemir N, Erdogan PY et al (2020) Effect of electrodeposition potential and time for nickel film generation from ionic liquid electrolytes for asymmetric supercapacitor production. Thin Solid Films 711:138309

    Article  CAS  Google Scholar 

  8. Parveen N, Ansari SA, Ansari MZ, Ansari MO (2021) Manganese oxide as an effective electrode material for energy storage: a review. Environ Chem Lett 1–27

  9. Zhang W-B, Zhang Q, Bao X et al (2021) Enhancing pseudocapacitive performance of CoP coating on nickel foam via surface Ni2P modification and Ni (II) doping for supercapacitor energy storage application. Surf Coat Technol 421:127469

    Article  CAS  Google Scholar 

  10. Ansari MZ, Nandi DK, Janicek P et al (2019) Low-temperature atomic layer deposition of highly conformal tin nitride thin films for energy storage devices. ACS Appl Mater Interfaces 11:43608–43621

    Article  CAS  PubMed  Google Scholar 

  11. Tyagi A, Mishra K, Sharma SK, Shukla VK (2022) Investigations on partially exfoliated graphite as electrode material for electric double layer capacitors (EDLCs). Mater Today Proc

  12. Veneri O, Capasso C, Patalano S (2018) Experimental investigation into the effectiveness of a super-capacitor based hybrid energy storage system for urban commercial vehicles. Appl Energy 227:312–323

    Article  Google Scholar 

  13. Naoi K, Ishimoto S, Miyamoto J, Naoi W (2012) Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environ Sci 5:9363–9373

    Article  CAS  Google Scholar 

  14. Tomboc GM, Kim H (2019) Derivation of both EDLC and pseudocapacitance characteristics based on synergistic mixture of NiCo2O4 and hollow carbon nanofiber: an efficient electrode towards high energy density supercapacitor. Electrochim Acta 318:392–404

    Article  CAS  Google Scholar 

  15. Ghebache Z, Hamidouche F, Safidine Z et al (2019) Synthesis and electrical conducting properties of poly (aniline) doped with zeolite HY nanocomposites containing SnO2 for high-performance supercapacitor electrode. J Inorg Organomet Polym Mater 29:1548–1558

    Article  CAS  Google Scholar 

  16. Wang X, Xu M, Fu Y et al (2016) A highly conductive and hierarchical PANI micro/nanostructure and its supercapacitor application. Electrochim Acta 222:701–708

    Article  CAS  Google Scholar 

  17. Xiong C, Li M, Nie S et al (2020) Non-carbonized porous lignin-free wood as an effective scaffold to fabricate lignin-free Wood@ Polyaniline supercapacitor material for renewable energy storage application. J Power Sources 471:228448

    Article  CAS  Google Scholar 

  18. Delvaux M, Duchet J, Stavaux P-Y et al (2000) Chemical and electrochemical synthesis of polyaniline micro-and nano-tubules. Synth Met 113:275–280

    Article  CAS  Google Scholar 

  19. Zhou K, He Y, Xu Q et al (2018) A hydrogel of ultrathin pure polyaniline nanofibers: oxidant-templating preparation and supercapacitor application. ACS Nano 12:5888–5894

    Article  CAS  PubMed  Google Scholar 

  20. Li J, Qiu S, Liu B et al (2021) Strong interaction between polyaniline and carbon fibers for flexible supercapacitor electrode materials. J Power Sources 483:229219

    Article  CAS  Google Scholar 

  21. Li Y, Zhou M, Xia Z et al (2020) Facile preparation of polyaniline covalently grafted to isocyanate functionalized reduced graphene oxide nanocomposite for high performance flexible supercapacitors. Colloids Surf A 602:125172

    Article  CAS  Google Scholar 

  22. Salunkhe RR, Hsu S, Wu KCW, Yamauchi Y (2014) Large-scale synthesis of reduced graphene oxides with uniformly coated polyaniline for supercapacitor applications. Chemsuschem 7:1551–1556

    Article  CAS  PubMed  Google Scholar 

  23. Wang G, Tang Q, Bao H et al (2013) Synthesis of hierarchical sulfonated graphene/MnO2/polyaniline ternary composite and its improved electrochemical performance. J Power Sources 241:231–238

    Article  CAS  Google Scholar 

  24. Janaky C, de Tacconi NR, Chanmanee W, Rajeshwar K (2012) Electrodeposited polyaniline in a nanoporous WO3 matrix: an organic/inorganic hybrid exhibiting both p-and n-type photoelectrochemical activity. J Phys Chem C 116:4234–4242

    Article  CAS  Google Scholar 

  25. Jiang H, Ma J, Li C (2012) Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes (Adv Mater 30/2012). Adv Mater 24:4196

  26. Faraji M, Abedini A (2018) Pulse reverse co-electrodeposition of polyaniline-tungsten oxide nanocomposite onto TiO2 nanotubes/Ti plate and evaluation of plate’s photocatalytic activity. J Photochem Photobiol A 361:12–18

    Article  CAS  Google Scholar 

  27. Giri S, Ghosh D, Das CK (2014) Growth of vertically aligned tunable polyaniline on graphene/ZrO2 nanocomposites for supercapacitor energy-storage application. Adv Funct Mater 24:1312–1324

    Article  CAS  Google Scholar 

  28. Zhang H, Wang J, Chen Y et al (2013) Long-term cycling stability of polyaniline on graphite electrodes used for supercapacitors. Electrochim Acta 105:69–74

    Article  CAS  Google Scholar 

  29. Hsini A, Naciri Y, Laabd M et al (2021) Development of a novel PANI@ WO3 hybrid composite and its application as a promising adsorbent for Cr (VI) ions removal. J Environ Chem Eng 9:105885

    Article  CAS  Google Scholar 

  30. Hu L, Peng X, Li Y et al (2017) Direct anodic exfoliation of graphite onto high-density aligned graphene for large capacity supercapacitors. Nano Energy 34:515–523

    Article  CAS  Google Scholar 

  31. Dadashi R, Bahram M, Faraji M (2022) Fabrication of a solid-state symmetrical supercapacitor based on polyaniline grafted multiwalled carbon nanotube deposit onto created vertically oriented graphene nanosheets on graphite sheet. J Energy Storage 52:104775

    Article  Google Scholar 

  32. Kim YO, Yu S-H, Ahn K-S et al (2015) Enhancing the photoresponse of electrodeposited WO3 film: Structure and thickness effect. J Electroanal Chem 752:25–32

    Article  CAS  Google Scholar 

  33. Prakash R (2002) Electrochemistry of polyaniline: study of the pH effect and electrochromism. J Appl Polym Sci 83:378–385

    Article  CAS  Google Scholar 

  34. Giannakopoulou T, Todorova N, Erotokritaki A et al (2020) Electrochemically deposited graphene oxide thin film supercapacitors: comparing liquid and solid electrolytes. Appl Surf Sci 528:146801

    Article  CAS  Google Scholar 

  35. Zou B-X, Liu X-X, Diamond D, Lau K-T (2010) Electrochemical synthesis of WO3/PANI composite for electrocatalytic reduction of iodate. Electrochim Acta 55:3915–3920

    Article  CAS  Google Scholar 

  36. Naciri Y, Hsini A, Bouziani A et al (2022) Z-scheme WO3/PANI heterojunctions with enhanced photocatalytic activity under visible light: a depth experimental and DFT studies. Chemosphere 292:133468

    Article  CAS  PubMed  Google Scholar 

  37. Neisi Z, Ansari-Asl Z, Dezfuli AS (2019) Polyaniline/Cu (II) metal-organic frameworks composite for high performance supercapacitor electrode. J Inorg Organomet Polym Mater 29:1838–1847

    Article  CAS  Google Scholar 

  38. Karimi-Nazarabad M, Goharshadi EK (2017) Highly efficient photocatalytic and photoelectrocatalytic activity of solar light driven WO3/g-C3N4 nanocomposite. Sol Energy Mater Sol Cells 160:484–493

    Article  CAS  Google Scholar 

  39. Chen Z, Lv H, Zhu X et al (2014) Electropolymerization of aniline onto anodic WO3 film: an approach to extend polyaniline electroactivity beyond pH 7. J Phys Chem C 118:27449–27458

    Article  CAS  Google Scholar 

  40. Xu H, Guo H, Chai C et al (2022) Anodized graphite felt as an efficient cathode for in-situ hydrogen peroxide production and Electro-Fenton degradation of rhodamine B. Chemosphere 286:131936

    Article  CAS  PubMed  Google Scholar 

  41. Lokhande V, Lokhande A, Namkoong G et al (2019) Charge storage in WO3 polymorphs and their application as supercapacitor electrode material. Results Phys 12:2012–2020

    Article  Google Scholar 

  42. Xu J, Ding T, Wang J et al (2015) Tungsten oxide nanofibers self-assembled mesoscopic microspheres as high-performance electrodes for supercapacitor. Electrochim Acta 174:728–734

    Article  CAS  Google Scholar 

  43. Deheryan S, Cott DJ, Mertens PW et al (2014) Direct correlation between the measured electrochemical capacitance, wettability and surface functional groups of CarbonNanosheets. Electrochim Acta 132:574–582

    Article  CAS  Google Scholar 

  44. Kumbhar VS, Lokhande AC, Gaikwad NS, Lokhande CD (2015) Facile synthesis of Sm2S3 diffused nanoflakes and their pseudocapactive behavior. Ceram Int 41:5758–5764

    Article  CAS  Google Scholar 

  45. Faraji M, Mohammadzadeh Aydisheh H (2018) Rational synthesis of a highly porous PANI-CNTs-PVC film for high performance flexible supercapacitor. ChemElectroChem 5:2882–2892

    Article  CAS  Google Scholar 

  46. Hosseini MG, Sefidi PY, Aydin Z, Kinayyigit S (2020) Toward enhancing the photoelectrochemical water splitting efficiency of organic acid doped polyaniline-WO3 photoanode by photo-assisted electrochemically reduced graphene oxide. Electrochim Acta 333:135475

    Article  CAS  Google Scholar 

  47. Li G-R, Feng Z-P, Zhong J-H et al (2010) Electrochemical synthesis of polyaniline nanobelts with predominant electrochemical performances. Macromolecules 43:2178–2183

    Article  CAS  Google Scholar 

  48. Antonaia A, Addonizio ML, Minarini C et al (2001) Improvement in electrochromic response for an amorphous/crystalline WO3 double layer. Electrochim Acta 46:2221–2227

    Article  CAS  Google Scholar 

  49. Quy VHV, Jo I-R, Kang S-H, Ahn K-S (2021) Amorphous-crystalline dual phase WO3 synthesized by pulsed-voltage electrodeposition and its application to electrochromic devices. J Ind Eng Chem 94:264–271

    Article  CAS  Google Scholar 

  50. Qu Y, Tong X, Yan C et al (2020) Hierarchical binder-free MnO2/TiO2 composite nanostructure on flexible seed graphite felt for high-performance supercapacitors. Vacuum 181:109648

    Article  CAS  Google Scholar 

  51. Wang F, Zhan X, Cheng Z, et al (2015) Tungsten oxide@ polypyrrole core–shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors. Small 11:749–755

  52. Aderyani S, Flouda P, Shah SA et al (2021) Simulation of cyclic voltammetry in structural supercapacitors with pseudocapacitance behavior. Electrochim Acta 390:138822

    Article  CAS  Google Scholar 

  53. Qiu S, Xiao L, Sushko ML et al (2017) Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv Energy Mater 7:1700403

    Article  Google Scholar 

  54. Patil UM, Gurav KV, Fulari VJ et al (2009) Characterization of honeycomb-like “β-Ni (OH) 2” thin films synthesized by chemical bath deposition method and their supercapacitor application. J Power Sources 188:338–342

    Article  CAS  Google Scholar 

  55. Chakraborty A, Devivaraprasad R, Bera B, Neergat M (2017) Electrochemical estimation of the active site density on metal-free nitrogen-doped carbon using catechol as an adsorbate. Phys Chem Chem Phys 19:25414–25422

    Article  CAS  PubMed  Google Scholar 

  56. Chakraborty A, Bera B, Priyadarshani D et al (2019) Electrochemical estimation of active site density on a metal-free carbon-based catalyst. RSC Adv 9:466–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ni D, Chen Y, Song H et al (2019) Free-standing and highly conductive PEDOT nanowire films for high-performance all-solid-state supercapacitors. J Mater Chem A 7:1323–1333

    Article  CAS  Google Scholar 

  58. Liu X, Wang J, Yang G (2018) Amorphous nickel oxide and crystalline manganese oxide nanocomposite electrode for transparent and flexible supercapacitor. Chem Eng J 347:101–110

    Article  CAS  Google Scholar 

  59. Yuan L, Lu X-H, Xiao X et al (2012) Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6:656–661

    Article  CAS  PubMed  Google Scholar 

  60. Zeng S, Chen H, Cai F et al (2015) Electrochemical fabrication of carbon nanotube/polyaniline hydrogel film for all-solid-state flexible supercapacitor with high areal capacitance. J Mater Chem A 3:23864–23870

    Article  CAS  Google Scholar 

  61. Xu D, Xu Q, Wang K et al (2014) Fabrication of free-standing hierarchical carbon nanofiber/graphene oxide/polyaniline films for supercapacitors. ACS Appl Mater Interfaces 6:200–209

    Article  CAS  PubMed  Google Scholar 

  62. Zhang Y, Si L, Zhou B et al (2016) Synthesis of novel graphene oxide/pristine graphene/polyaniline ternary composites and application to supercapacitor. Chem Eng J 288:689–700

    Article  CAS  Google Scholar 

  63. Stoller MD, Park S, Zhu Y et al (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding was provided by Urmia University.

Author information

Authors and Affiliations

Authors

Contributions

RD: methodology, investigation, data curation, writing. MB: investigation, writing—review and editing, Supervisor. MF: investigation, writing—review and editing, Supervisor.

Corresponding author

Correspondence to Morteza Bahram.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 273 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadashi, R., Bahram, M. & Faraji, M. Polyaniline-tungsten oxide nanocomposite co-electrodeposited onto anodized graphene oxide nanosheets/graphite electrode for high performance supercapacitor device. J Appl Electrochem 53, 893–908 (2023). https://doi.org/10.1007/s10800-022-01812-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01812-9

Keywords

Navigation