Skip to main content

Advertisement

Log in

Regulation of the electric double-layer capacitance of MoS2/ionic liquid by carbon modification

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Carbon modification can solve the aggregation problem of MoS2 sheets and change its surface hydrophilicity. In this work, a simple hydrothermal synthesis method was developed to prepare C/MoS2 composites and use them as electrode materials. Ionic Liquids of [BMIM][BF4] and [BMIM][PF6] acetonitrile solutions are used as electrolytes. The microstructure of C/MoS2/ILs electric double-layer capacitance is given by molecular dynamics simulation. Both simulation and experimental results show that carbon modification enhances the capacitance of MoS2 in ionic liquids. The experimental results show that the specific capacitance of 0.1069C/MoS2 in [BMIM][BF4] solution is 74.21F.g−1, 2.56 times that of pure MoS2. Due to the dual control of surface adsorption and ion transport, the capacitance in [BMIM] [BF4] is larger than that in [BMIM] [PF6]. Equilibrium molecular dynamic simulation results confirm that the interaction between [BMIM][PF6] and slit surface is stronger than [BMIM][BF4]. This leads to different affinities between the two different electrolytes and the material surfaces. Through non-equilibrium molecular dynamic simulation, considering the different migration rates of different ions in [BMIM][BF4] and [BMIM][PF6] solutions, the simulation and experiment are consistent in the trend of capacitance change. The results show that carbon modification can avoid the aggregation of MoS2, change the interaction between the surface and different ionic liquids, and thus regulate the capacitance performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ujjain SK, Ahuja P, Bhatia R, Attri P (2016) Printable multi-walled carbon nanotubes thin film for high performance all solid state flexible supercapacitors. Mater Res Bull 83:167–171

    Article  CAS  Google Scholar 

  2. Tseng LH, Hsiao CH, Nguyen DD, Hsieh PY, Lee CY, Tai NH (2018) Activated carbon sandwiched manganese dioxide/graphene ternary composites for supercapacitor electrodes. Electrochim Acta 266:284–292

    Article  CAS  Google Scholar 

  3. Pour GB, Aval LF, Mirzaee M (2020) CNTs supercapacitor based on the PVDF/PVA gel electrolytes. Recent Pat Nanotechnol 14:163–170

    Article  CAS  PubMed  Google Scholar 

  4. Mirzaee M, Pour GB (2018) Design and fabrication of ultracapacitor based on paper substrate and BaTiO3/PEDOT: PSS separator film. Recent Pat Nanotechnol 12:192–199

    Article  CAS  PubMed  Google Scholar 

  5. Pour GB, Aval LF, Mirzaee M (2018) Flexible graphene supercapacitor based on the PVA electrolyte and BaTiO3/PEDOT:PSS composite separator. J Mater Sci-Mater Electron 29:17432–17437

    Article  Google Scholar 

  6. Ge Y, Jalili R, Wang C, Zheng T, Chao Y, Wallace GG (2017) A robust free-standing MoS2/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film for supercapacitor applications. Electrochim Acta 235:348–355

    Article  CAS  Google Scholar 

  7. Naz R, Imtiaz M, Liu Q, Yao L, Abbas W, Li T et al (2019) Highly defective 1T-MoS2 nanosheets on 3D reduced graphene oxide networks for supercapacitors. Carbon 152:697–703

    Article  CAS  Google Scholar 

  8. Shang P, Zhang J, Tang W, Xu Q, Guo S (2016) 2D thin nanoflakes assembled on mesoporous carbon nanorods for enhancing electrocatalysis and for improving asymmetric supercapacitors. Adv Func Mater 26:7766–7774

    Article  CAS  Google Scholar 

  9. Hao C, Wen F, Xiang J, Wang L, Hou H, Su Z et al (2014) Controlled incorporation of Ni(OH)2 nanoplates into flowerlike MoS2 nanosheets for flexible all-solid-state supercapacitors. Adv Func Mater 24:6700–6707

    Article  CAS  Google Scholar 

  10. Xie B, Chen Y, Yu M, Sun T, Lu L, Xie T et al (2016) Hydrothermal synthesis of layered molybdenum sulfide/N-doped graphene hybrid with enhanced supercapacitor performance. Carbon 99:35–42

    Article  CAS  Google Scholar 

  11. Gao A, Zeng D, Liu Q, Yi F, Shu D, Cheng H et al (2019) Molecular self-assembly assisted synthesis of carbon nanoparticle-anchored MoS2 nanosheets for high-performance supercapacitors. Electrochim Acta 295:187–194

    Article  CAS  Google Scholar 

  12. Sangeetha DN, Selvakumar M (2018) Active-defective activated carbon/MoS2 composites for supercapacitor and hydrogen evolution reactions. Appl Surf Sci 453:132–140

    Article  CAS  Google Scholar 

  13. Luo W, Zhang G, Cui Y, Liu Y, Jin C, Hao J et al (2018) One-pot synthesis of highly stable carbon–MoS2 nanosphere electrodes using a co-growth mechanism for supercapacitors. New J Chem 42:10111–10117

    Article  CAS  Google Scholar 

  14. Wang B, Wu Q, Sun H, Zhang J, Ren J, Luo Y et al (2017) An intercalated graphene/(molybdenum disulfide) hybrid fiber for capacitive energy storage. J Phys Chem A 5:925–930

    CAS  Google Scholar 

  15. Sun T, Li Z, Liu X, Ma L, Wang J, Yang S (2016) Facile construction of 3D graphene/MoS2 composites as advanced electrode materials for supercapacitors. J Power Sources 331:180–188

    Article  CAS  Google Scholar 

  16. Kim BK, Sy S, Yu A, Zhang J (2015) Electrochemical supercapacitors for energy storage and conversion. Handbook of clean energy systems. Wiley, Chichester, pp 1–25

    Google Scholar 

  17. Zhao C, Zhou Y, Ge Z, Zhao C, Qian X (2018) Facile construction of MoS2/RCF electrode for high-performance supercapacitor. Carbon 127:699–706

    Article  CAS  Google Scholar 

  18. Hayyan M, Mjalli FS, Hashim MA, AlNashef IM, Mei TX (2013) Investigating the electrochemical windows of ionic liquids. J Ind Eng Chem 19:106–112

    Article  CAS  Google Scholar 

  19. Fedorov MV, Kornyshev AA (2014) Ionic liquids at electrified interfaces. Chem Rev 114:2978–3036

    Article  CAS  PubMed  Google Scholar 

  20. Earle MJ, Esperanca JM, Gilea MA, Lopes JN, Rebelo LP, Magee JW et al (2006) The distillation and volatility of ionic liquids. Nature 439:831–834

    Article  CAS  PubMed  Google Scholar 

  21. Sarno M, Baldino L, Scudieri C, Cardea S, Reverchon E (2020) A one-step SC-CO2 assisted technique to produce compact PVDF-HFP MoS2 supercapacitor device. J Phys Chem Solids 136:12

    Article  Google Scholar 

  22. Jeon H, Jeong JM, Kang HG, Kim HJ, Park J, Kim DH et al (2018) Scalable water-based production of highly conductive 2D nanosheets with ultrahigh volumetric capacitance and rate capability. Adv Energy Mater 8:3

    Article  Google Scholar 

  23. Pandey K, Yadav P, Mukhopadhyay I (2015) Electrochemical and electronic properties of flower-like MoS2 nanostructures in aqueous and ionic liquid media. RSC Adv 5:57943–57949

    Article  CAS  Google Scholar 

  24. Zhang Y, Dyatkin B, Cummings PT (2019) Molecular investigation of oxidized graphene: anatomy of the double-layer structure and ion dynamics. J Phys Chem C 123:12583–12591

    Article  CAS  Google Scholar 

  25. Zhang Y, Cummings PT (2019) Effects of solvent concentration on the performance of ionic-liquid/carbon supercapacitors. ACS Appl Mater Interfaces 11:42680–42689

    Article  CAS  PubMed  Google Scholar 

  26. Pykal M, Langer M, Blahová Prudilová B, Banáš P, Otyepka M (2019) Ion interactions across graphene in electrolyte aqueous solutions. J Phys Chem C 123:9799–9806

    Article  CAS  Google Scholar 

  27. Fang A, Smolyanitsky A (2019) Large variations in the composition of ionic liquid-solvent mixtures in nanoscale confinement. ACS Appl Mater Interfaces 11:27243–27250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mo T, Bi S, Zhang Y, Presser V, Wang X, Gogotsi Y et al (2020) Ion structure transition enhances charging dynamics in subnanometer pores. ACS Nano 14:2395–2403

    Article  CAS  PubMed  Google Scholar 

  29. Zhu JB, Lu LH, Shi LL, Dai ZY, Zhuang W, Weng ZS (2020) Electric double-layer of emim DCA ionic liquid at heterogeneous interface of TiO2/C composite: from simulation to experiment. Electrochim Acta 341:13

    Article  Google Scholar 

  30. Chen M, Li S, Feng G (2017) The influence of anion shape on the electrical double layer microstructure and capacitance of ionic liquids-based supercapacitors by molecular simulations. Molecules 22:12

    Google Scholar 

  31. Bedrov D, Vatamanu J, Hu ZZ (2015) Ionic liquids at charged surfaces: Insight from molecular simulations. J Non-Cryst Solids 407:339–348

    Article  CAS  Google Scholar 

  32. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  33. Liu ZP, Huang SP, Wang WC (2004) A refined force field for molecular simulation of imidazolium-based ionic liquids. J Phys Chem B 108:12978–12989

    Article  CAS  Google Scholar 

  34. Wu X, Liu Z, Huang S, Wang W (2005) Molecular dynamics simulation of room-temperature ionic liquid mixture of [bmim][BF4] and acetonitrile by a refined force field. Phys Chem Chem Phys 7:2771–2779

    Article  CAS  PubMed  Google Scholar 

  35. Song X, Lu L, Wei M, Dai Z, Wang S (2018) Molecular dynamics simulations on the water flux in different two-dimension materials. Mol Simul 46:689–698

    Article  Google Scholar 

  36. Zhang Y, Zhu W, Li J, Zhu Y, Wang A, Lu X et al (2019) Effects of ionic hydration and hydrogen bonding on flow resistance of ionic aqueous solutions confined in molybdenum disulfide nanoslits: insights from molecular dynamics simulations. Fluid Phase Equilib 489:23–29

    Article  CAS  Google Scholar 

  37. Verlet L (1967) Computer “experiments” on classical fluids. i. thermodynamical properties of lennard-jones molecules. Phys Rev 159:98–103

    Article  CAS  Google Scholar 

  38. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an n⋅log(n) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  39. Razmkhah M, Hamed Mosavian MT, Moosavi F (2018) Structural analysis of an amino acid ionic liquid: bulk and electrical double layer. J Mol Liq 268:506–516

    Article  CAS  Google Scholar 

  40. Wu M, Li W, Li S, Feng G (2017) Capacitive performance of amino acid ionic liquid electrolyte-based supercapacitors by molecular dynamics simulation. RSC Adv 7:28945–28950

    Article  CAS  Google Scholar 

  41. Fan LQ, Liu GJ, Zhang CY, Wu JH, Wei YL (2015) Facile one-step hydrothermal preparation of molybdenum disulfide/carbon composite for use in supercapacitor. Int J Hydrog Energy 40:10150–10157

    Article  CAS  Google Scholar 

  42. Li Y, Wang H, Huang B, Wang L, Wang R, He B et al (2018) Mo2C-induced solid-phase synthesis of ultrathin MoS2 nanosheet arrays on bagasse-derived porous carbon frameworks for high-energy hybrid sodium-ion capacitors. J Mater Chem A 6:14742–14751

    Article  CAS  Google Scholar 

  43. Govindan R, Hong XJ, Sathishkumar P, Cai YP, Gu FL (2020) Construction of metal-organic framework-derived CeO2/C integrated MoS2 hybrid for high-performance asymmetric supercapacitor. Electrochim Acta 353:12

    Article  Google Scholar 

  44. Zhang Y, He T, Liu G, Zu L, Yang J (2017) One-pot mass preparation of MoS2/C aerogels for high-performance supercapacitors and lithium-ion batteries. Nanoscale 9:10059–10066

    Article  CAS  PubMed  Google Scholar 

  45. De Levie R (1964) On porous electrodes in electrolyte solutions—IV. Electrochim Acta 9:1231–1245

    Article  Google Scholar 

  46. Ma K, Wang X, Forsman J, Woodward CE (2017) Molecular dynamic simulations of ionic liquid’s structural variations from three to one layers inside a series of slit and cylindrical nanopores. J Phys Chem C 121:13539–13548

    Article  CAS  Google Scholar 

  47. Yu G, Zhao D, Wen L, Yang S, Chen X (2012) Viscosity of ionic liquids: database, observation, and quantitative structure-property relationship analysis. AIChE J 58:2885–2899

    Article  CAS  Google Scholar 

  48. Sarno M, Baldino L, Scudieri C, Cardea S (2017) SC-CO2-assisted process for a high energy density aerogel supercapacitor: the effect of GO loading. Nanotechnology 28:12

    Article  Google Scholar 

  49. Balducci A, Dugas R, Taberna PL, Simon P, Plee D, Mastragostino M et al (2007) High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte. J Power Sources 165:922–927

    Article  CAS  Google Scholar 

  50. Pandey GP, Hashmi SA (2013) Ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate-based gel polymer electrolyte for electrochemical capacitors. J Mater Chem A 1:3372–3378

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support from the National Natural Science Foundation of China [21676137 Linghong Lu and 21838004 Linghong Lu]. The authors thank the High-Performance Computing Center of Nanjing Tech University for supporting the computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linghong Lu.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5833 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, Z., Zhu, J., Lu, L. et al. Regulation of the electric double-layer capacitance of MoS2/ionic liquid by carbon modification. J Appl Electrochem 53, 689–703 (2023). https://doi.org/10.1007/s10800-022-01802-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01802-x

Keywords

Navigation