Skip to main content
Log in

Electrosynthesis of poly (4-amino-3-nitrostyrene) film and its characterization

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Polymeric coatings of styrene derivatives due to its ease of production and application have been employed in fascinating range of applications. Distinct from other polymerization techniques, electrodeposition offers as a convenient strategy to achieve strong adherence between the polymer films and electrode surfaces which is highly desirable for functional coatings. In this study, it was aimed to electrosynthesize and characterize the functional polymer, poly (4-amino-3-nitrostyrene), for the first time. Electrosynthesis from 4-amino-3-nitrostyrene monomer onto gold electrodes was investigated in 0.1 M tetrabutyl ammonium perchlorate/dichloromethane solution. Cathodic electropolymerization was performed by cyclic voltammetry (CV) with a potential range of 0.4 V to − 2.0 V vs. SCE. The properties of the obtained polymeric coatings were investigated via electrochemical, microscopic and spectrochemical methods. The redox and charge transfer resistance behaviour of the resulting polymer was examined via CV and electrochemical impedance spectroscopy (EIS) measurements. Spectroscopic (UV–Vis, ATR-FTIR) techniques were employed to distinguish between the monomer and the obtained polymer film. The polymeric film thickness was measured by an optical profilometer and the optical energy gap of the obtained film was 2.41 eV. Scanning electron microscopy characterization of the polymer on the substrate revealed a compact film structure. Contact angle measurements displayed the low wettability of the polymer. Due to the good adhesion of the coatings, its usability for future corrosion protection studies was examined via EIS measurements. Electropolymerized poly (4-amino-3-nitrostyrene) showed a good potential to be used as a corrosion protection coating material since it preserved a long-term corrosion resistance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li C, Bai H, Shi G et al (2009) Conducting polymer nanomaterials: electrosynthesis and applications. Chem Soc Rev 38:2397–2409. https://doi.org/10.1039/B816681C

    Article  CAS  PubMed  Google Scholar 

  2. Caricato AP, Luches A (2011) Applications of the matrix-assisted pulsed laser evaporation method for the deposition of organic, biological and nanoparticle thin films: a review. Appl Phys A 105:565–582. https://doi.org/10.1007/s00339-011-6600-0

    Article  CAS  Google Scholar 

  3. Kuhr M, Bauer S, Rothhaar U, Wolff D (2003) Coatings on plastics with the PICVD technology. Thin Solid Films 442:107–116. https://doi.org/10.1016/S0040-6090(03)00956-8

    Article  CAS  Google Scholar 

  4. Alf ME, Asatekin A, Barr MC et al (2010) Chemical vapor deposition of conformal, functional, and responsive polymer films. Adv Mater 22:1993–2027. https://doi.org/10.1002/adma.200902765

    Article  CAS  PubMed  Google Scholar 

  5. Duran H, Ogura K, Nakao K et al (2009) High-vacuum vapor deposition and in situ monitoring of N-carboxy anhydride benzyl glutamate polymerization. Langmuir 25:10711–10718. https://doi.org/10.1021/la9012125

    Article  CAS  PubMed  Google Scholar 

  6. Bahramian A, Eyraud M, Maria S et al (2019) Enhancing the corrosion resistance of Cu/Ni-P/Au electrical contacts by electropolymerized poly(methyl methacrylate). Corros Sci 149:75–86. https://doi.org/10.1016/j.corsci.2018.12.026

    Article  CAS  Google Scholar 

  7. Levinson SB, Spindel S (1972) Recent developments in architectural and maintenance painting. David Litter Laboratories & FSPT, New York

    Google Scholar 

  8. Yang W, Xu H, Li Y, Wang W (2017) Fabrications of polyaniline films by pulse electrodeposition in acidic solutions with different anions and their thermoelectric performances. J Electron Mater 46:4815–4824. https://doi.org/10.1007/s11664-017-5461-5

    Article  CAS  Google Scholar 

  9. Abd El-Hafeez GM, El-Rabeie MM, Gaber AF, Farag ZR (2021) Electropolymerized durable coatings deposited onto Pt-electrode as corrosion inhibitor for mild steel. J Adhes Sci Technol. https://doi.org/10.1080/01694243.2021.1963602

    Article  Google Scholar 

  10. Sharma S, Sudhakara P, Omran B et al (2021) Recent trends and developments in conducting polymer nanocomposites for multifunctional applications. Polymers 13(17):2898. https://doi.org/10.3390/POLYM13172898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ibanez JG, Rincón ME, Gutierrez-Granados S et al (2018) Conducting polymers in the fields of energy, environmental remediation, and chemical-chiral sensors. Chem Rev 118:4731–4816. https://doi.org/10.1021/ACS.CHEMREV.7B00482

    Article  CAS  PubMed  Google Scholar 

  12. Das TK, Prusty S (2012) Review on conducting polymers and their applications. Polym - Plast Technol Eng 51:1487–1500. https://doi.org/10.1080/03602559.2012.710697

    Article  CAS  Google Scholar 

  13. Shi K, Lei Y, Wang S, Shiu KK (2010) Electrochemically induced free-radical polymerization for the fabrication of amperometric glucose biosensors. Electroanalysis 22:2366–2375. https://doi.org/10.1002/ELAN.201000165

    Article  CAS  Google Scholar 

  14. Cram SL, Spinks GM, Wallace GG, Brown HR (2002) Electrochemical polymerization of acrylics on stainless steel cathodes. J Appl Polym Sci 87:765–773. https://doi.org/10.1002/app.11436

    Article  CAS  Google Scholar 

  15. Bell JP, Wimolkiatisak AS, Rhee HW et al (1995) Graphite-epoxy composites: effects of an applied interphase. J Adhes 53:103–116. https://doi.org/10.1080/00218469508014374

    Article  CAS  Google Scholar 

  16. De Giglio E, Cometa S, Satriano C et al (2009) Electrosynthesis of hydrogel films on metal substrates for the development of coatings with tunable drug delivery performances. J Biomed Mater Res A 88:1048–1057. https://doi.org/10.1002/jbm.a.31908

    Article  CAS  PubMed  Google Scholar 

  17. Teng FS, Mahalingam R, Subramanian RV, Raff RAV (1977) Polymer film coatings on metal electrodes through electroinitiated polymerization and their evaluation. J Electrochem Soc 124:995–1006. https://doi.org/10.1149/1.2133515

    Article  CAS  Google Scholar 

  18. De Giglio E, Cometa S, Cioffi N et al (2007) Analytical investigations of poly(acrylic acid) coatings electrodeposited on titanium-based implants: a versatile approach to biocompatibility enhancement. Anal Bioanal Chem 389:2055–2063. https://doi.org/10.1007/s00216-007-1299-7

    Article  CAS  PubMed  Google Scholar 

  19. Meinderink D, Orive AG, Grundmeier G (2018) Electrodeposition of poly(acrylic acid) on stainless steel with enhanced adhesion properties. Surface and interface analysis. Wiley, Hoboken, pp 1224–1229

    Google Scholar 

  20. Bonifacio MA, Cometa S, Dicarlo M et al (2017) Gallium-modified chitosan/poly(acrylic acid) bilayer coatings for improved titanium implant performances. Carbohydr Polym 166:348–357. https://doi.org/10.1016/j.carbpol.2017.03.009

    Article  CAS  PubMed  Google Scholar 

  21. Ates M, Uludag N, Karazehir T, Arican F (2013) Synthesis of 2-(3,6-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-9 H -carbazole-9-yl)ethyl methacrylate, electropolymerization, characterization and impedimetric study. J Electrochem Soc 160:G46–G54. https://doi.org/10.1149/2.011302jes

    Article  CAS  Google Scholar 

  22. Vergara AV, Pernites RB, Tiu BDB et al (2016) Capacitive detection of morphine via cathodically electropolymerized, molecularly imprinted poly(p-aminostyrene) films. Macromol Chem Phys 217:1810–1822. https://doi.org/10.1002/macp.201600127

    Article  CAS  Google Scholar 

  23. Dutta P, Pernites RB, Danda C, Advincula RC (2011) SPR detection of dopamine using cathodically electropolymerized, molecularly imprinted poly-p-aminostyrene thin films. Macromol Chem Phys 212:2439–2451. https://doi.org/10.1002/macp.201100365

    Article  CAS  Google Scholar 

  24. Tidswell BM, Doughty AG (1971) The electroinitiated polymerization of styrene: part 2. Polymer (Guildf) 12:760–774. https://doi.org/10.1016/0032-3861(71)90024-3

    Article  CAS  Google Scholar 

  25. Funt BL, Bhadani SN (1964) Electroinitiated polymerization of styrene: II. Kinetics in solutions of tetramethylammonium salts. Can J Chem 42:2733–2738. https://doi.org/10.1139/v64-404

    Article  CAS  Google Scholar 

  26. Tidswell BM, Doughty AG (1971) The electroinitiated polymerization of styrene: part 1. Polymer (Guildf) 12:431–443. https://doi.org/10.1016/0032-3861(71)90061-9

    Article  CAS  Google Scholar 

  27. Akbulut U, Fernandez JE, Birke RL (1975) Electroinitiated cationic polymerization of styrene by direct electron transfer. J Polym Sci Part A 13:133–149. https://doi.org/10.1002/pol.1975.170130114

    Article  CAS  Google Scholar 

  28. Aeiyach S, Lacaze PC (1989) Anodic and cathodic electrochemical “ring-opening” polymerization of styrene sulphide in organic media. Polymer (Guildf) 30:752–755. https://doi.org/10.1016/0032-3861(89)90167-5

    Article  CAS  Google Scholar 

  29. Ortega JM, Menolasina S, de Márquez OP, Márquez J (1986) More on the electropolymerization of styrene. Polymer (Guildf) 27:1304–1306. https://doi.org/10.1016/0032-3861(86)90023-6

    Article  CAS  Google Scholar 

  30. Funt BL, Blain TJ (1971) Effects of pulses of current on the cationic electropolymerization of isobutylvinylether. J Polym Sci Part A 9:115–127. https://doi.org/10.1002/pol.1971.150090110

    Article  CAS  Google Scholar 

  31. Mertens M, Calberg C, Martinot L, Jérôme R (1996) The electroreduction of acrylonitrile: a new insight into the mechanism. Macromolecules 29:4910–4918. https://doi.org/10.1021/ma946442a

    Article  CAS  Google Scholar 

  32. Boiziau C, Lecayon G (1988) Adhesion of polymers to metals: a review of the results obtained studying a model system. Surf Interface Anal 12:475–485. https://doi.org/10.1002/sia.740120902

    Article  Google Scholar 

  33. Márquez J, López F, Márquez O, Parra H (1990) Electrochemically controlled molecular weight of polystyrene production. Polym Bull 24:451–458. https://doi.org/10.1007/BF00294100

    Article  Google Scholar 

  34. Braglia M, Ferrari IV, Djenizian T et al (2017) Bottom-up electrochemical deposition of poly(styrene sulfonate) on nanoarchitectured electrodes. ACS Appl Mater Interfaces 9:22902–22910. https://doi.org/10.1021/acsami.7b04335

    Article  CAS  PubMed  Google Scholar 

  35. Piotrowski P, Pawłowska J, Pawłowski J et al (2015) Self-assembly of thioether functionalized fullerenes on gold and their activity in electropolymerization of styrene. RSC Adv 5:86771–86778. https://doi.org/10.1039/c5ra14318g

    Article  CAS  Google Scholar 

  36. Ferreira ES, Giacomelli C, Giacomelli FC, Spinelli A (2004) Evaluation of the inhibitor effect of l-ascorbic acid on the corrosion of mild steel. Mater Chem Phys 83:129–134. https://doi.org/10.1016/J.MATCHEMPHYS.2003.09.020

    Article  CAS  Google Scholar 

  37. Zhao R, Rupper P, Gaan S (2017) Recent development in phosphonic acid-based organic coatings on aluminum. Coatings 7:133. https://doi.org/10.3390/COATINGS7090133

    Article  Google Scholar 

  38. Cot A, Lakard S, Dejeu J et al (2012) Electrosynthesis and characterization of polymer films on silicon substrates for applications in micromanipulation. Synth Met 162:2370–2378. https://doi.org/10.1016/j.synthmet.2012.11.023

    Article  CAS  Google Scholar 

  39. Bolat G, Kuralay F, Temelli B et al (2015) Electrochemistry of poly(5-phenyl dipyrromethane) and its characterization. Polym Bull. https://doi.org/10.1007/s00289-015-1311-x

    Article  Google Scholar 

  40. Kerr JB, Miller LL, Van De Mark MR (1980) A poly-p-nitrostyrene on platinum electrode. Polymer charging kinetics and electrocatalysis of organic dihalide reductions. J Am Chem Soc 102:3383–3390. https://doi.org/10.1021/ja00530a014

    Article  CAS  Google Scholar 

  41. Jérême C, Geskin V, Lazzaroni R et al (2001) Full-electrochemical preparation of conducting/insulating binary polymer films. Chem Mater 13:1656–1664. https://doi.org/10.1021/cm001124d

    Article  CAS  Google Scholar 

  42. Tanguy J, Deniau G, Zalczer G, Ucayon G (1996) Cathodic electropolymerization of methacrylonitrile studied in situ by quartz crystal microbalance, cyclic voltammetry, and impedance spectroscopy. J Electroanal Chem 417:175–184

    Article  CAS  Google Scholar 

  43. Xia SJ, Liu G, Birss VI (2000) Properties of thin polystyrene films prepared on gold electrodes by the dip-coating method. Langmuir 16:1379–1387. https://doi.org/10.1021/la9907735

    Article  CAS  Google Scholar 

  44. Bolat G, Kuralay F, Eroglu G, Abaci S (2013) Fabrication of a polyaniline ultramicroelectrode via a self assembled monolayer modified gold electrode. Sensors 13:8079–8094. https://doi.org/10.3390/s130708079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hadi HA, Ismail RA, Almashhadani NJ (2019) Preparation and characteristics study of polystyrene/porous silicon photodetector prepared by electrochemical etching. J Inorg Organomet Polym Mater 29:1100–1110. https://doi.org/10.1007/s10904-019-01072-9

    Article  CAS  Google Scholar 

  46. Yang Y, Chen F, Chen Q et al (2017) Synthesis and characterization of grafting polystyrene from guar gum using atom transfer radical addition. Carbohydr Polym 176:266–272. https://doi.org/10.1016/j.carbpol.2017.08.081

    Article  CAS  PubMed  Google Scholar 

  47. Darafarin M, Eslami H, Raoufian E (2019) Electropolymerization of styrene in alcoholic solution and preparation of its bilayer with polyacrylamide. Polym Bull 76:3003–3016. https://doi.org/10.1007/s00289-018-2514-8

    Article  CAS  Google Scholar 

  48. Hermán V, Takacs H, Duclairoir F et al (2015) Core double-shell cobalt/graphene/polystyrene magnetic nanocomposites synthesized by in situ sonochemical polymerization. RSC Adv 5:51371–51381. https://doi.org/10.1039/c5ra06847a

    Article  Google Scholar 

  49. Selvin S, Paul P, Yardily A et al (2014) Synthesis, characterization and DFT studies of 4-amino-5-(indol-3-oyl)-2- phenylaminothiazole. J Res Sci 2:2278–9073

    Google Scholar 

  50. Gao R, Pan L, Wang H et al (2019) Breaking trade-off between selectivity and activity of nickel-based hydrogenation catalysts by tuning both steric effect and d-band center. Adv Sci. https://doi.org/10.1002/advs.201900054

    Article  Google Scholar 

  51. Covolan V, Innocentini-Mei L, Rossi C (1997) Chemical modifications on polystyrene latex: preparation and characterization for use in immunological applications. Polym Adv Technol 8:44–50. https://doi.org/10.1002/(SICI)1099-1581(199701)8:1%3c44::AID-PAT613%3e3.0.CO;2-1

    Article  CAS  Google Scholar 

  52. Wang R, Guo W, Li X et al (2017) Highly efficient MOF-based self-propelled micromotors for water purification. RSC Adv 7:42462–42467. https://doi.org/10.1039/C7RA08127H

    Article  CAS  Google Scholar 

  53. Banerjee S, Kitchen JA, Gunnlaugsson T, Kelly JM (2013) The effect of the 4-amino functionality on the photophysical and DNA binding properties of alkyl-pyridinium derived 1,8-naphthalimides. Org Biomol Chem 11:5642–5655. https://doi.org/10.1039/c3ob40370j

    Article  CAS  PubMed  Google Scholar 

  54. Armstrong NR, Carter C, Donley C et al (2003) Interface modification of ITO thin films: organic photovoltaic cells. Thin Solid Films 445:342–352. https://doi.org/10.1016/j.tsf.2003.08.067

    Article  CAS  Google Scholar 

  55. Kim JS, Friend RH, Cacialli F (1999) Surface energy and polarity of treated indium-tin-oxide anodes for polymer light-emitting diodes studied by contact-angle measurements. J Appl Phys 86:2774–2778. https://doi.org/10.1063/1.371124

    Article  CAS  Google Scholar 

  56. Jung SG, Choi KB, Park CH et al (2019) Effects of Cl2 plasma treatment on stability, wettability, and electrical properties of ITO for OLEDs. Opt Mater (Amst) 93:51–57. https://doi.org/10.1016/j.optmat.2019.04.056

    Article  CAS  Google Scholar 

  57. Gupta N, Sasikala S, Mahadik DB et al (2012) Dual-scale rough multifunctional superhydrophobic ITO coatings prepared by air annealing of sputtered indium-tin alloy thin films. Appl Surf Sci 258:9723–9731. https://doi.org/10.1016/j.apsusc.2012.06.019

    Article  CAS  Google Scholar 

  58. Yalcin E, Can M, Rodríguez Seco C et al (2018) Semiconductor self-assembled monolayers as selective contact for efficient PiN perovskite solar cells. Energy Environ Sci. https://doi.org/10.1039/C8EE01831F

    Article  Google Scholar 

  59. Whitesides GM, Laibinis PE (1990) Wet chemical approaches to the characterization of organic surfaces: self-assembled monolayers, wetting, and the physical-organic chemistry of the solid-liquid interface. Langmuir 6:87–96. https://doi.org/10.1021/la00091a013

    Article  CAS  Google Scholar 

  60. Xu J, Zhu Z, Xue H (2015) Porous polystyrene-block-poly(acrylic acid)/hemoglobin membrane formed by dually driven self-assembly and electrochemical application. ACS Appl Mater Interfaces 7:8852–8858. https://doi.org/10.1021/acsami.5b01487

    Article  CAS  PubMed  Google Scholar 

  61. Cui L, Chen M, Chen C et al (2019) Systematic studies on (Co)polymerization of polar styrene monomers with palladium catalysts. Macromolecules 52:7197–7206. https://doi.org/10.1021/acs.macromol.9b01299

    Article  CAS  Google Scholar 

  62. Thormann E, Simonsen AC, Hansen PL, Mouritsen OG (2008) Interactions between a polystyrene particle and hydrophilic and hydrophobic surfaces in aqueous solutions. Langmuir 24:7278–7284. https://doi.org/10.1021/la8005162

    Article  CAS  PubMed  Google Scholar 

  63. Zhang J, Zhang L (2019) Polystyrene/TiO2 nanocomposite coatings to inhibit corrosion of aluminum alloy 2024–T3. ACS Appl Nano Mater 2:6368–6377. https://doi.org/10.1021/acsanm.9b01358

    Article  CAS  Google Scholar 

  64. Sangawar VS, Golchha MC (2013) Evolution of the optical properties of Polystyrene thin films filled with zinc oxide nanoparticles. Int J Sci Eng Res 4:2700–2705

    Google Scholar 

  65. Yabagi JA, Kimpa MI, Muhammad MN et al (2018) The effect of gamma irradiation on chemical, morphology and optical properties of polystyrene nanosphere at various exposure time. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/298/1/012004

    Article  Google Scholar 

  66. Hussein AM, Dannoun EMA, Aziz SB et al (2020) Steps toward the band gap identification in polystyrene based solid polymer nanocomposites integrated with tin titanate nanoparticles. Polymers (Basel). https://doi.org/10.3390/polym12102320

    Article  PubMed  Google Scholar 

  67. Ocón P, Cristobal AB, Herrasti P, Fatas E (2005) Corrosion performance of conducting polymer coatings applied on mild steel. Corros Sci. https://doi.org/10.1016/j.corsci.2004.07.005

    Article  Google Scholar 

  68. Nguyen PT, Rammelt U, Plieth W (2002) Electrochemical impedance spectroscopy for characterization of coatings with intrinsically conducting polymers. Macromol Symp 187:929–938. https://doi.org/10.1002/1521-3900(200209)187:1%3c929::AID-MASY929%3e3.0.CO;2-I

    Article  CAS  Google Scholar 

  69. Guenbour A, Kacemi A, Benbachir A (2000) Corrosion protection of copper by polyaminophenol films. Prog Org Coatings 39:151–155. https://doi.org/10.1016/S0300-9440(00)00141-7

    Article  CAS  Google Scholar 

  70. Quiñones R, Gawalt ES (2008) Polystyrene formation on monolayer-modified nitinol effectively controls corrosion. Langmuir 24:10858–10864. https://doi.org/10.1021/la801906e

    Article  CAS  PubMed  Google Scholar 

  71. Li P, Tan TC, Lee JY (1997) Corrosion protection of mild steel by electroactive polyaniline coatings. Synth Met 88:237–242. https://doi.org/10.1016/S0379-6779(97)03860-5

    Article  CAS  Google Scholar 

  72. Düdükcü M (2013) The electrochemical synthesis of poly(o-phenylenediamine) on stainless steel and its corrosion protection ability in 3.5 % NaCl solution. Res Chem Intermed 39:3641–3647. https://doi.org/10.1007/s11164-012-0868-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of this work under ID number FBA-2017-16280 by Research Council of Hacettepe University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Abaci.

Ethics declarations

Conflict of interest

The authors confirm there is no conflict of interest in the current manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolat, G., Yaman, Y.T., Vural, O.A. et al. Electrosynthesis of poly (4-amino-3-nitrostyrene) film and its characterization. J Appl Electrochem 53, 227–240 (2023). https://doi.org/10.1007/s10800-022-01775-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01775-x

Keywords

Navigation