Skip to main content

Advertisement

Log in

Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocomposite

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This study investigates the photoelectrocatalytic water splitting at Sn3O4 and ternary rGO-Sn3O4/SnO2 heterostructure nanocomposite materials. The nanocomposite exhibited superior performance compared to Sn3O4, a result which was related to stronger absorption in the visible region, narrower band gap energy (1.8 eV), and higher photocurrent under both UV/Vis and visible light irradiation. The nanocomposite was also more efficient at photoexcited charge separation, as reflected in the enhanced H2 evolution. H2 production at the rGO-Sn3O4/SnO2 electrode reached a value that was twice as high as that of Sn3O4 under optimized photoelectrochemical conditions and UV/Vis irradiation. UV–Vis light induced a faster charge carrier on the nanocomposite’s surface due to the direct excitation of SnO2 and to posterior electron transfer to the reduced graphene oxide (rGO) followed by electron recombination at Sn3O4, as well as to electron excitation to the conduction band of Sn3O4 and further H2 evolution. This work provides an easy and low-cost method for obtaining Sn3O4-based materials for the production of clean energy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Qi J, Zhang W, Cao R (2018) Solar-to-hydrogen energy conversion based on water splitting. Adv Energy Mater 8:1701620. https://doi.org/10.1002/aenm.201701620

    Article  CAS  Google Scholar 

  2. Jiang C, Moniz SJA, Wang A et al (2017) Photoelectrochemical devices for solar water splitting—materials and challenges. Chem Soc Rev 46:4645–4660. https://doi.org/10.1039/C6CS00306K

    Article  CAS  PubMed  Google Scholar 

  3. de Brito JF, Tavella F, Genovese C et al (2018) Role of CuO in the modification of the photocatalytic water splitting behavior of TiO2 nanotube thin films. Appl Catal B Environ 224:136–145. https://doi.org/10.1016/j.apcatb.2017.09.071

    Article  CAS  Google Scholar 

  4. Ma X, Zhang J, Wang B et al (2018) Hierarchical Cu2O foam/g-C3N4 photocathode for photoelectrochemical hydrogen production. Appl Surf Sci 427:907–916. https://doi.org/10.1016/j.apsusc.2017.09.075

    Article  CAS  Google Scholar 

  5. Iwase A, Ng YH, Amal R, Kudo A (2015) Solar hydrogen evolution using a CuGaS2 photocathode improved by incorporating reduced graphene oxide. J Mater Chem A 3:8566–8570. https://doi.org/10.1039/C5TA01237F

    Article  CAS  Google Scholar 

  6. Adhikari SP, Hood ZD, More KL et al (2015) Visible light assisted photocatalytic hydrogen generation by Ta2O5/Bi2O3, TaON/Bi2O3, and Ta3N5/Bi2O3 composites. RSC Adv 5:54998–55005. https://doi.org/10.1039/C5RA06563A

    Article  CAS  Google Scholar 

  7. Wang Y, Wang Q, Zhan X et al (2013) Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5:8326–8339. https://doi.org/10.1039/C3NR01577G

    Article  CAS  PubMed  Google Scholar 

  8. Lee JS, You KH, Park CB (2012) Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv Mater 24:1084–1088. https://doi.org/10.1002/adma.201104110

    Article  CAS  PubMed  Google Scholar 

  9. Zhou H, Qu Y, Zeid T, Duan X (2012) Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ Sci 5:6732–6743. https://doi.org/10.1039/C2EE03447F

    Article  CAS  Google Scholar 

  10. Paracchino A, Laporte V, Sivula K et al (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10:456–461. https://doi.org/10.1038/nmat3017

    Article  CAS  PubMed  Google Scholar 

  11. Bessegato GG, Guaraldo TT, de Brito JF et al (2015) Achievements and trends in photoelectrocatalysis: from environmental to energy applications. Electrocatalysis 6:415–441. https://doi.org/10.1007/s12678-015-0259-9

    Article  CAS  Google Scholar 

  12. Stein HS, Gutkowski R, Siegel A et al (2016) New materials for the light-induced hydrogen evolution reaction from the Cu–Si–Ti–O system. J Mater Chem A 4:3148–3152. https://doi.org/10.1039/C5TA10186G

    Article  CAS  Google Scholar 

  13. Jang YJ, Bin PY, Kim HE et al (2016) Oxygen-intercalated CuFeO2 photocathode fabricated by hybrid microwave annealing for efficient solar hydrogen production. Chem Mater 28:6054–6061. https://doi.org/10.1021/acs.chemmater.6b00460

    Article  CAS  Google Scholar 

  14. Salomão PEA, Gomes DS, Ferreira EJC et al (2019) Photoelectrochemical hydrogen production from water splitting using heterostructured nanowire arrays of Bi2O3/BiAl oxides as a photocathode. Sol Energy Mater Sol Cells 194:276–284. https://doi.org/10.1016/j.solmat.2018.12.037

    Article  CAS  Google Scholar 

  15. Pawar GS, Elikkottil A, Pesala B et al (2019) Plasmonic nickel nanoparticles decorated on to LaFeO3 photocathode for enhanced solar hydrogen generation. Int J Hydrogen Energy 44:578–586. https://doi.org/10.1016/j.ijhydene.2018.10.240

    Article  CAS  Google Scholar 

  16. Wang J, Umezawa N, Hosono H (2016) Mixed valence tin oxides as novel van der waals materials: theoretical predictions and potential applications. Adv Energy Mater 6:1501190. https://doi.org/10.1002/aenm.201501190

    Article  CAS  Google Scholar 

  17. Balgude SD, Sethi YA, Kale BB et al (2016) Nanostructured layered Sn3O4 for hydrogen production and dye degradation under sunlight. RSC Adv 6:95663–95669. https://doi.org/10.1039/C6RA20058C

    Article  CAS  Google Scholar 

  18. Huda A, Suman PH, Torquato LDM et al (2019) Visible light-driven photoelectrocatalytic degradation of acid yellow 17 using Sn3O4 flower-like thin films supported on Ti substrate (Sn3O4/TiO2/Ti). J Photochem Photobiol A Chem 376:196–205. https://doi.org/10.1016/j.jphotochem.2019.01.039

    Article  CAS  Google Scholar 

  19. Manikandan M, Tanabe T, Li P et al (2014) Photocatalytic water splitting under visible light by mixed-valence Sn3O4. ACS Appl Mater Interfaces 6:3790–3793. https://doi.org/10.1021/am500157u

    Article  CAS  PubMed  Google Scholar 

  20. Pan X, Yi Z (2015) Graphene oxide regulated tin oxide nanostructures: engineering composition, morphology, band structure, and photocatalytic properties. ACS Appl Mater Interfaces 7:27167–27175. https://doi.org/10.1021/acsami.5b07858

    Article  CAS  PubMed  Google Scholar 

  21. Xu L, Chen W, Ke S et al (2020) Construction of heterojunction Bi/Bi5O7I/Sn3O4 for efficient noble-metal-free Z-scheme photocatalytic H2 evolution. Chem Eng J 382:122810. https://doi.org/10.1016/j.cej.2019.122810

    Article  CAS  Google Scholar 

  22. Tanabe T, Hashimoto M, Mibu K et al (2017) Synthesis of single phase Sn3O4: native visible-light-sensitive photocatalyst with high photocatalytic performance for hydrogen evolution. J Nanosci Nanotechnol 17:3454–3459. https://doi.org/10.1166/jnn.2017.13060

    Article  CAS  Google Scholar 

  23. Chen G, Ji S, Sang Y et al (2015) Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity. Nanoscale 7:3117–3125. https://doi.org/10.1039/C4NR05749J

    Article  CAS  PubMed  Google Scholar 

  24. Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nature 442:282–286. https://doi.org/10.1038/nature04969

    Article  CAS  PubMed  Google Scholar 

  25. Romeiro FC, Rodrigues MA, Silva LAJ et al (2017) rGO-ZnO nanocomposites for high electrocatalytic effect on water oxidation obtained by microwave-hydrothermal method. Appl Surf Sci 423:743–751. https://doi.org/10.1016/j.apsusc.2017.06.221

    Article  CAS  Google Scholar 

  26. Zhu Y, Murali S, Cai W et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  PubMed  Google Scholar 

  27. Romeiro FC, Silva SC, Nossol E, Lima RC (2020) One step microwave-hydrothermal synthesis of rGO–TiO2 nanocomposites for enhanced electrochemical oxygen evolution reaction. New J Chem 44:6825–6832. https://doi.org/10.1039/D0NJ01475C

    Article  CAS  Google Scholar 

  28. Yu X, Zhao Z, Sun D et al (2018) Microwave-assisted hydrothermal synthesis of Sn3O4 nanosheet/rGO planar heterostructure for efficient photocatalytic hydrogen generation. Appl Catal B Environ 227:470–476. https://doi.org/10.1016/j.apcatb.2018.01.055

    Article  CAS  Google Scholar 

  29. Romeiro FC, Silva BC, Martins AS et al (2021) Superior performance of rGO-tin oxide nanocomposite for selective reduction of CO2 to methanol. J CO2 Util 46:101460. https://doi.org/10.1016/j.jcou.2021.101460

    Article  CAS  Google Scholar 

  30. Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  PubMed  Google Scholar 

  31. Masteghin MG, Godoi DRM, Orlandi MO (2019) Heating Method Effect on SnO Micro-Disks as NO2 Gas Sensor. Front Mater 6:1–8. https://doi.org/10.3389/fmats.2019.00171

    Article  Google Scholar 

  32. Aragón FH, Coaquira JAH, Hidalgo P et al (2011) Evidences of the evolution from solid solution to surface segregation in Ni-doped SnO2 nanoparticles using Raman spectroscopy. J Raman Spectrosc 42:1081–1086. https://doi.org/10.1002/jrs.2802

    Article  CAS  Google Scholar 

  33. Ghosh S, Ganesan K, Polaki SR et al (2014) Evolution and defect analysis of vertical graphene nanosheets. J Raman Spectrosc 45:642–649. https://doi.org/10.1002/jrs.4530

    Article  CAS  Google Scholar 

  34. Yang D, Velamakanni A, Bozoklu G et al (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon N Y 47:145–152. https://doi.org/10.1016/j.carbon.2008.09.045

    Article  CAS  Google Scholar 

  35. Xia W, Wang H, Zeng X et al (2014) High-efficiency photocatalytic activity of type II SnO/Sn3O4 heterostructures via interfacial charge transfer. CrystEngComm 16:6841–6847. https://doi.org/10.1039/C4CE00884G

    Article  CAS  Google Scholar 

  36. Kwoka M, Ottaviano L, Passacantando M et al (2005) XPS study of the surface chemistry of L-CVD SnO2 thin films after oxidation. Thin Solid Films 490:36–42. https://doi.org/10.1016/j.tsf.2005.04.014

    Article  CAS  Google Scholar 

  37. Tang Q, Jiang L, Liu J et al (2014) Effect of surface manganese valence of manganese oxides on the activity of the oxygen reduction reaction in alkaline media. ACS Catal 4:457–463. https://doi.org/10.1021/cs400938s

    Article  CAS  Google Scholar 

  38. Yin L, Chen D, Cui X et al (2014) Normal-pressure microwave rapid synthesis of hierarchical SnO2@rGO nanostructures with superhigh surface areas as high-quality gas-sensing and electrochemical active materials. Nanoscale 6:13690–13700. https://doi.org/10.1039/C4NR04374J

    Article  CAS  PubMed  Google Scholar 

  39. Shen Y, Yang S, Zhou P et al (2013) Evolution of the band-gap and optical properties of graphene oxide with controllable reduction level. Carbon N Y 62:157–164. https://doi.org/10.1016/j.carbon.2013.06.007

    Article  CAS  Google Scholar 

  40. Wang H, Sun F, Zhang Y et al (2010) Photochemical growth of nanoporous SnO2 at the air–water interface and its high photocatalytic activity. J Mater Chem 20:5641–5645. https://doi.org/10.1039/B926930D

    Article  CAS  Google Scholar 

  41. Gupta S, Singh R, Agarwal G et al (2018) Electrochemical hydrogen evolution and storage studies on bismuth nano hexagons. Int J Hydrogen Energy 43:21642–21648. https://doi.org/10.1016/j.ijhydene.2018.03.207

    Article  CAS  Google Scholar 

  42. Gao D, Wu X, Wang P et al (2019) Simultaneous realization of direct photoinduced deposition and improved H2-evolution performance of Sn-nanoparticle-modified TiO2 photocatalyst. ACS Sustain Chem Eng 7:10084–10094. https://doi.org/10.1021/acssuschemeng.9b01516

    Article  CAS  Google Scholar 

  43. Chen Y, Kanan MW (2012) Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J Am Chem Soc 134:1986–1989. https://doi.org/10.1021/ja2108799

    Article  CAS  PubMed  Google Scholar 

  44. He Y, Li D, Chen J et al (2014) Sn3O4: a novel heterovalent-tin photocatalyst with hierarchical 3D nanostructures under visible light. RSC Adv 4:1266–1269. https://doi.org/10.1039/C3RA45743E

    Article  CAS  Google Scholar 

  45. Fan C-M, Peng Y, Zhu Q et al (2013) Synproportionation reaction for the fabrication of Sn2+ self-doped SnO2-x nanocrystals with tunable band structure and highly efficient visible light photocatalytic activity. J Phys Chem C 117:24157–24166. https://doi.org/10.1021/jp407296f

    Article  CAS  Google Scholar 

  46. Khajehsaeidi Z, Sangpour P, Ghaffarinejad A (2019) A novel co-electrodeposited Co/MoSe2/reduced graphene oxide nanocomposite as electrocatalyst for hydrogen evolution. Int J Hydrogen Energy 44:19816–19826. https://doi.org/10.1016/j.ijhydene.2019.05.161

    Article  CAS  Google Scholar 

  47. Zhang Y, Xiao J, Lv Q, Wang S (2018) Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes. Front Chem Sci Eng 12:494–508. https://doi.org/10.1007/s11705-018-1732-9

    Article  CAS  Google Scholar 

  48. Lotfi N, Shahrabi T, Yaghoubinezhad Y, Barati Darband G (2019) Electrodeposition of cedar leaf-like graphene Oxide@Ni–Cu@Ni foam electrode as a highly efficient and ultra-stable catalyst for hydrogen evolution reaction. Electrochim Acta 326:134949. https://doi.org/10.1016/j.electacta.2019.134949

    Article  CAS  Google Scholar 

  49. Dursun S, Kaya IC, Kalem V, Akyildiz H (2018) UV/visible light active CuCrO2 nanoparticle–SnO2 nanofiber p–n heterostructured photocatalysts for photocatalytic applications. Dalt Trans 47:14662–14678. https://doi.org/10.1039/C8DT02850H

    Article  CAS  Google Scholar 

  50. Zeng D, Xiao L, Ong W-J et al (2017) Hierarchical ZnIn2S4/MoSe2 nanoarchitectures for efficient noble-metal-free photocatalytic hydrogen evolution under visible light. Chemsuschem 10:4624–4631. https://doi.org/10.1002/cssc.201701345

    Article  CAS  PubMed  Google Scholar 

  51. Wang W, An T, Li G et al (2017) Earth-abundant Ni2P/g-C3N4 lamellar nanohydrids for enhanced photocatalytic hydrogen evolution and bacterial inactivation under visible light irradiation. Appl Catal B Environ 217:570–580. https://doi.org/10.1016/j.apcatb.2017.06.027

    Article  CAS  Google Scholar 

  52. Xia W, Qian H, Zeng X et al (2019) TiO2@Sn3O4 nanorods vertically aligned on carbon fiber papers for enhanced photoelectrochemical performance. RSC Adv 9:23334–23342. https://doi.org/10.1039/C9RA03885J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu X, Zhao Z, Ren N et al (2018) Top or bottom, assembling modules determine the photocatalytic property of the sheetlike nanostructured hybrid photocatalyst composed with Sn3O4 and rGO (GQD). ACS Sustain Chem Eng 6:11775–11782. https://doi.org/10.1021/acssuschemeng.8b02030

    Article  CAS  Google Scholar 

  54. Huang Q, Ye Z, Xiao X (2015) Recent progress in photocathodes for hydrogen evolution. J Mater Chem A 3:15824–15837. https://doi.org/10.1039/C5TA03594E

    Article  CAS  Google Scholar 

  55. Chen L, Hou C, Liu Z et al (2020) Inhibition of Sn(ii) oxidation in Z-scheme BiVO4-QD@Sn3O4 for overall water splitting. Chem Commun 56:13884–13887. https://doi.org/10.1039/D0CC05566B

    Article  CAS  Google Scholar 

  56. Akurati KK, Vital A, Hany R et al (2005) One-step flame synthesis of SnO2/TiO2 composite nanoparticles for photocatalytic applications. Int J Photoenergy 7:153–161. https://doi.org/10.1155/S1110662X05000231

    Article  CAS  Google Scholar 

  57. Chang X, Wang T, Gong J (2016) CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ Sci 9:2177–2196. https://doi.org/10.1039/C6EE00383D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the São Paulo State Research Foundation (FAPESP) (Procs. #2019/18856-5, #2017/26219-0, #2017/13123-4) for financial support. The authors are grateful to the National Council for Scientific and Technological Development (CNPq) (Processes 154509/2018-3, 150223/2019-6), INCT-DATREN (FAPESP-#2014/50945-4; CNPq- 465571/2014-0) and also to the suport from Financier of Studies and Projects (FINEP, Proc. 0382/16). FEG-SEM facilities were provided by LMA-IQ-UNESP.

Author information

Authors and Affiliations

Authors

Contributions

FdCR: Conceptualization, Investigation, Methodology, Validation, Writing—Original Draft, Writing—Review & Editing. ASM: Methodology, Writing—Review & Editing. BCeS: Investigation, Methodology, Validation. MVBZ: Resources, Project administration, Writing—Review & Editing, Supervision. MOO: Resources, Project administration, Writing—Review & Editing, Supervision.

Corresponding authors

Correspondence to Fernanda da Costa Romeiro or Marcelo Ornaghi Orlandi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1029 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa Romeiro, F., Martins, A.S., Costa e Silva, B. et al. Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocomposite. J Appl Electrochem 52, 1469–1480 (2022). https://doi.org/10.1007/s10800-022-01729-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01729-3

Keywords

Navigation