Skip to main content
Log in

Effect of Al doping on electrochemical performance of NaTi2(PO4)3/C anode for aqueous sodium ion battery

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The Na1+xAlxTi2−x(PO4)3/C (x = 0, 0.05, 0.10, 0.20) composites serving as anode for aqueous sodium ion battery are successfully synthesized through a facile sol–gel route. The results indicate that introduction of proper amount of aluminum has no obvious effect on the structure and morphology of NaTi2(PO4)3/C. Among the four synthesized samples, Na1.1Al0.1Ti1.9(PO4)3/C (NATP-0.10) exhibits the best electrochemical performance. NATP-0.10 delivers a discharge specific capacity of 115.8, 106.9, 98.4, and 89.1 mAh g−1 at 2, 5, 10, and 20 C rate, respectively, and still retains 114.7 mAh g−1 when the current density comes back to 2 C. Additionally, NATP-0.10 exhibits an initial discharge capacity of 102.9 mAh g−1 and still retains a reversible capacity of 90.1 mAh g−1 at 10 C rate after 200 cycles. Cyclic voltammetry and electrochemical impedance spectroscopy demonstrate the better electrochemical performance of NATP-0.10 is due to the faster sodium migration and enhanced electrochemical kinetics.

Graphical abstract

Al doping Na1+xAlxTi2−x(PO4)3/C (x = 0, 0.05, 0.10, 0.20) composites were firstly used as anodes in aqueous SIBs. The electrochemical performance of NaTi2(PO4)3/C has been improved by introducing a proper amount of Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  2. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  3. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  CAS  Google Scholar 

  4. Whitacre JF, Shanbhag S, Mohamed A, Polonsky A, Carlisle K, Gulakowski J, Wu W, Smith C, Cooney L, Blackwood D, Dandrea JC, Truchot C (2015) A polyionic, large-format energy storage device using an aqueous electrolyte and thick-format composite NaTi2(PO4)3/activated carbon negative electrodes. Energy Technol 3:796–798

    Article  Google Scholar 

  5. Liu Y, Qiao Y, Zhang WX, Wang H, Chen KY, Zhu HP, Li Z, Huang YH (2015) Nanostructured alkali cation incorporated delta-MnO2 cathode materials for aqueous sodium-ion batteries. J Mater Chem A 3:7780–7785

    Article  CAS  Google Scholar 

  6. Kim H, Hong J, Park KY, Kim H, Kim SW, Kang K (2014) Aqueous rechargeable Li and Na ion batteries. Chem Rev 114:11788–11827

    Article  CAS  Google Scholar 

  7. Li Z, Young D, Xiang K, Carter WC, Chiang YM (2013) Towards high power high energy aqueous sodium-ion batteries: the NaTi2(PO4)3/Na0.44MnO2 system. Adv Energy Mater 3:290–294

    Article  CAS  Google Scholar 

  8. Hou ZG, Li XN, Liang JW, Zhu YC, Qian YT (2015) An aqueous rechargeable sodium ion battery based on a NaMnO2–NaTi2(PO4)3 hybrid system for stationary energy storage. J Mater Chem A 3:1400–1404

    Article  CAS  Google Scholar 

  9. Zhang XQ, Hou ZG, Li XN, Liang JW, Zhu YC, Qian YT (2016) Na-birnessite with high capacity and long cycle life for rechargeable aqueous sodium-ion battery cathode electrodes. J Mater Chem A 4:856–860

    Article  CAS  Google Scholar 

  10. Whitacre JF, Tevar A, Sharma S (2010) Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochem Commun 12:463–466

    Article  CAS  Google Scholar 

  11. Tevar AD, Whitacre JF (2010) Relating synthesis conditions and electrochemical performance for the sodium intercalation compound Na4Mn9O18 in aqueous electrolyte. J Electrochem Soc 157:A870–A875

    Article  CAS  Google Scholar 

  12. Zhang Q, Liao CY, Zhai TY, Li HQ (2016) High performance LiNi0.5Mn1.5O4 cathode by Al-coating and Al3+-doping through a physical vapor deposition method. Electrochim Acta 191:470–478

    Article  Google Scholar 

  13. Mason CW, Lange F (2015) Aqueous ion battery systems using sodium vanadium phosphate stabilized by titanium substitution. ECS Electrochem Lett 4:A79–A82

    Article  CAS  Google Scholar 

  14. Wu XY, Cao YL, Ai XP, Qian JF, Yang HX (2013) A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry. Electrochem Commun 31:145–148

    Article  CAS  Google Scholar 

  15. Shao MM, Wang B, Liu MC, Wu C, Ke FS, Ai XP, Yang HX, Qian JF (2019) A high-voltage and cycle stable aqueous rechargeable Na-ion battery based on Na2Zn3[Fe(CN)6]2–NaTi2(PO4)3 intercalation chemistry. ACS Appl Energy Mater 2:5809–5815

    Article  CAS  Google Scholar 

  16. Park SI, Gocheva I, Okada S, Yamaki J (2011) Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries. J Electrochem Soc 158:A1067–A1070

    Article  CAS  Google Scholar 

  17. He YW, Yuan H, Wu YX, Chen C, Yang S, Ai CC (2016) NaTi2(PO4)3/carbon and NaTi2(PO4)3/graphite composites as anode materials for aqueous rechargeable Na-ion batteries. Electrochemistry 84:705–708

    Article  Google Scholar 

  18. Mohamed AI, Whitacre JF (2017) Capacity fade of NaTi2(PO4)3 in aqueous electrolyte solutions: relating pH increases to long term stability. Electrochim Acta 235:730–739

    Article  CAS  Google Scholar 

  19. Wu W, Mohamed A, Whitacre JF (2013) Microwave synthesized NaTi2(PO4)3 as an aqueous sodium-ion negative electrode. J Electrochem Soc 160:A497–A504

    Article  CAS  Google Scholar 

  20. Wu W, Yan JY, Wise A, Rutt A, Whitacre JF (2014) Using intimate carbon to enhance the performance of NaTi2(PO4)3 anode materials: carbon nanotubes vs graphite. J Electrochem Soc 161:A561–A567

    Article  CAS  Google Scholar 

  21. Pang G, Yuan CZ, Nie P, Ding B, Zhu JJ, Zhang XG (2014) Synthesis of NASICON-type structured NaTi2(PO4)3–graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries. Nanoscale 6:6328–6334

    Article  CAS  Google Scholar 

  22. Pang G, Nie P, Yuan CZ, Shen LF, Zhang XG, Zhu JJ, Ding B (2014) Enhanced performance of aqueous sodium-ion batteries using electrodes based on the NaTi2(PO4)3/MWNTs-Na0.44MnO2 system. Energy Technol 2:705–712

    Article  CAS  Google Scholar 

  23. Zhao BD, Lin B, Zhang S, Deng C (2015) A frogspawn-inspired hierarchical porous NaTi2(PO4)3–C array for high-rate and long-life aqueous rechargeable sodium batteries. Nanoscale 7:18552–18560

    Article  CAS  Google Scholar 

  24. Zhao BD, Wang QY, Zhang S, Deng C (2015) Self-assembled wafer-like porous NaTi2(PO4)3 decorated with hierarchical carbon as a high-rate anode for aqueous rechargeable sodium batteries. J Mater Chem A 3:12089–12096

    Article  CAS  Google Scholar 

  25. Yao XL, Luo YX, Li Y, Li WW, Fang MH, Shui M, Shu J, Ren YL (2018) The investigation of NaTi2(PO4)3@C/Ag as a high-performance anode material for aqueous rechargeable sodium-ion batteries. Mater Res Bull 104:194–201

    Article  CAS  Google Scholar 

  26. Liu ZX, An YF, Pang G, Dong SY, Xu CY, Mi CH, Zhang XG (2018) TiN modified NaTi2(PO4)3 as an anode material for aqueous sodium ion batteries. Chem Eng J 353:814–823

    Article  CAS  Google Scholar 

  27. Mohamed AI, Sansone NJ, Kuei B, Washburn NR, Whitacre JF (2015) Using polypyrrole coating to improve cycling stability of NaTi2(PO4)3 as an aqueous Na-ion anode. J Electrochem Soc 162:A2201–A2207

    Article  CAS  Google Scholar 

  28. Li XN, Zhu XB, Liang JW, Hou ZG, Wang Y, Lin N, Zhu YC, Qian YT (2014) Graphene-supported NaTi2(PO4)3 as a high rate anode material for aqueous sodium ion batteries. J Electrochem Soc 161(6):A1181–A1187

    Article  CAS  Google Scholar 

  29. Zhang F, Li WF, Xiang XD, Sun ML (2017) Nanocrystal-assembled porous Na3MgTi(PO4)3 aggregates as highly stable anode for aqueous sodium-ion batteries. Chem Eur J 23:12944–12948

    Article  CAS  Google Scholar 

  30. Huang ZQ, Yao M, Jiang Z, Meng WW, Li B, Li C, Li CC, He ZX, Meng W, Dai L, Wang L (2018) Impact of Fe doping on performance of NaTi2(PO4)3/C anode for aqueous lithium ion battery. Solid State Ion 327:123–128

    Article  CAS  Google Scholar 

  31. Pérez-Estébanez M, Isasi-Marín J, Többens DM, Rivera-Calzada A, León C (2014) A systematic study of NASICON-type Li1+xMxTi2−x(PO4)3 (M: Cr, Al, Fe) by neutron diffraction and impedance spectroscopy. Solid State Ion 266:1–8

    Article  Google Scholar 

  32. Zajac W, Tarach M, Trenczek-Zajac A (2017) Towards control over redox behaviour and ionic conductivity in LiTi2(PO4)3 fast lithium-ion conductor. Acta Mater 140:417–423

    Article  CAS  Google Scholar 

  33. Arbi K, Mandal S, Rojo JM, Sanz J (2002) Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2−xAlx(PO4)3, 0 ≤ x ≤ 0.7. A parallel NMR and electric impedance study. Chem Mater 14:1091–1097

    Article  CAS  Google Scholar 

  34. Luo JY, Cui WJ, He P, Xia YY (2010) Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat Chem 2:760–765

    Article  Google Scholar 

  35. Wang DX, Liu Q, Chen CJ, Lia ML, Meng X, Bie XF, Wei YJ, Huang YH, Du F, Wang CZ, Chen G (2016) NASICON-structured NaTi2(PO4)3@C nanocomposite as the low operation voltage anode material for high-performance sodium-ion batteries. ACS Appl Mater Interfaces 8:2238–2246

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was financially supported by the Guangdong Basic and Applied Basic Research Foundation, China (No. 2019A1515110825).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjun Wang or Chaoliu Zeng.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Yang, L., Liu, H. et al. Effect of Al doping on electrochemical performance of NaTi2(PO4)3/C anode for aqueous sodium ion battery. J Appl Electrochem 52, 1563–1572 (2022). https://doi.org/10.1007/s10800-022-01726-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01726-6

Keywords

Navigation