Skip to main content
Log in

Citric acid-assisted synthesis of Na3V2(PO4)3/C composite as high-performance electrode material for sodium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Na3V2(PO4)3 with NASICON structure is regarded as a hopeful cathode in sodium-ion batteries (NIBs). Nevertheless, the immanently inferior electronic conductivity significantly restricts its electrochemical performance and practical application. In this work, a facile solid-state sintering approach employing citric acid as both the reduction agent and carbon source has been developed to prepared Na3V2(PO4)3/C composite. The influence of different sintering temperatures on the structure, morphology, and electrochemical performance of Na3V2(PO4)3/C for NIBs was systematically investigated. The results indicate that the Na3V2(PO4)3/C sample calcined at 850 °C (NVP/C-850) presents the best electrochemical property among the as-obtained four NVP/C samples studied. The optimized NVP/C-850 composite exhibits a reversible capacity of 117.4 mAh/g at 0.2 C, and after 100 cycles, capacity retention of 94.7% was kept. Besides, among the four electrodes, NVP/C-850 electrode exhibited smallest resistance and highest Na+ diffusion coefficient. Thus, the outstanding results demonstrate potential application of the NVP/C for NIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhou X, Wang F, Zhu Y, Liu Z (2011) Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J Mater Chem 21:3353–3358

    Article  CAS  Google Scholar 

  2. Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657

    Article  CAS  PubMed  Google Scholar 

  3. Lv Y-J, Long Y-F, Su J, Lv X-Y, Wen Y-X (2014) Synthesis of bowl-like mesoporous LiFePO4/C composites as cathode materials for lithium ion batteries. Electrochim Acta 119:155–163

    Article  CAS  Google Scholar 

  4. Kim S-W, Seo D-H, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721

    Article  CAS  Google Scholar 

  5. Zhan P, Wang S, Yuan Y, Jiao K, Jiao S (2015) Facile synthesis of nanorod-like single crystalline Na0.44MnO2 for high performance sodium-ion batteries. J Electrochem Soc 162:A1028–A1032

    Article  CAS  Google Scholar 

  6. Gu F, Yao X, Sun T, Fang M, Shui M, Shu J, Ren Y (2020) Studies on micron-sized Na0.7MnO2.05 with excellent cycling performance as a cathode material for aqueous rechargeable sodium-ion batteries. Appl Phys A 126:658

    Article  CAS  Google Scholar 

  7. Ellis BL, Nazar LF (2012) Sodium and sodium-ion energy storage batteries. Curr Opin Solid St M 16:168–177

    Article  CAS  Google Scholar 

  8. Yuan Y, Chen Z, Yu H, Zhang X, Liu T, Xia M, Zheng R, Shui M, Shu J (2020) Heteroatom-doped carbon-based materials for lithium and sodium ion batteries. Energy Storage Mater 32:65–90

    Article  Google Scholar 

  9. Hung IM, Jafian S, Van Nguyen N, Duy-Long P (2017) Effect of different vanadium sources on the electrochemical performance of sodium vanadium phosphate cathodes for sodium-ion batteries. Ceram Int 43:S655–S663

    Article  CAS  Google Scholar 

  10. Berthelot R, Carlier D, Delmas C (2011) Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nature Mater 10:74–80

    Article  CAS  Google Scholar 

  11. Dai K, Mao J, Song X, Battaglia V, Liu G (2015) Na0.44MnO2 with very fast sodium diffusion and stable cycling synthesized via polyvinylpyrrolidone-combustion method. J Power Sources 285:161–168

    Article  CAS  Google Scholar 

  12. Liu Y, Yang J, Guo B, Han X, Yuan Q, Fu Q, Lin H, Liu G, Xu M (2018) Enhanced electrochemical performance of Na0.5Ni0.25Mn0.75O2 micro-sheets at 3.8 V for Na-ion batteries with nanosized-thin AlF3 coating. Nanoscale 10:12625–12630

    Article  CAS  PubMed  Google Scholar 

  13. Yu C-Y, Park J-S, Jung H-G, Chung K-Y, Aurbach D, Sun Y-K, Myung S-T (2015) NaCrO2 cathode for high-rate sodium-ion batteries. Energy Environ Sci 8:2019–2026

    Article  CAS  Google Scholar 

  14. Chen X, Zhou X, Hu M, Liang J, Wu D, Wei J, Zhou Z (2015) Stable layered P3/P2 Na0.66Co0.5Mn0.5O2 cathode materials for sodium-ion batteries. J Mater Chem A 3:20708–20714

    Article  CAS  Google Scholar 

  15. Kaliyappan K, Liu J, Lushington A, Li R, Sun X (2015) Highly stable Na2/3(Mn0.54Ni0.13Co0.13)O2 cathode modified by atomic layer deposition for sodium-ion batteries. ChemSusChem 8:2537–2543

    Article  CAS  PubMed  Google Scholar 

  16. Lee KT, Ramesh TN, Nan F, Botton G, Nazar LF (2011) Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries. Chem Mater 23:3593–3600

    Article  CAS  Google Scholar 

  17. Ko JS, Doan-Nguyen VVT, Kim H-S, Petrissans X, DeBlock RH, Choi CS, Long JW, Dunn BS (2017) High-rate capability of Na2FePO4F nanoparticles by enhancing surface carbon functionality for Na-ion batteries. J Mater Chem A 5:18707–18715

    Article  CAS  Google Scholar 

  18. Barpanda P, Ye T, Nishimura S-I, Chung S-C, Yamada Y, Okubo M, Zhou H, Yamada A (2012) Sodium iron pyrophosphate: a novel 3.0 V iron-based cathode for sodium-ion batteries. Electrochem Commun 24:116–119

    Article  CAS  Google Scholar 

  19. Liu Y, Zhou Y, Zhang J, Xia Y, Chen T, Zhang S (2016) Monoclinic phase Na3Fe2(PO4)3 synthesis, structure, and electrochemical performance as cathode material in sodium-ion batteries. ACS Sustainable Chem Eng 5:1306–1314

    Article  CAS  Google Scholar 

  20. Rajagopalan R, Chen B, Zhang Z, Wu XL, Du Y, Huang Y, Li B, Zong Y, Wang J, Nam GH, Sindoro M, Dou SX, Liu HK, Zhang H (2017) Improved reversibility of Fe3+/Fe4+ redox couple in sodium super ion conductor type Na3Fe2(PO4)3 for sodium-ion batteries. Adv Mater 29:1605694

    Article  CAS  Google Scholar 

  21. Wu L, Shi S, Zhang X, Yang Y, Liu J, Tang S, Zhong S (2018) Room-temperature pre-reduction of spinning solution for the synthesis of Na3V2(PO4)3/C nanofibers as high-performance cathode materials for Na-ion batteries. Electrochim Acta 274:233–241

    Article  CAS  Google Scholar 

  22. Zheng L-L, Xue Y, Hao S-E, Wang Z-B (2018) Porous Na3V2(PO4)3 prepared by freeze-drying method as high performance cathode for sodium-ion batteries. Ceram Inter 44:9880–9886

    Article  CAS  Google Scholar 

  23. Tao S, Cui P, Huang W, Yu Z, Wang X, Wei S, Liu D, Song L, Chu W (2016) Sol-gel design strategy for embedded Na3V2(PO4)3 particles into carbon matrices for high-performance sodium-ion batteries. Carbon 96:1028–1033

    Article  CAS  Google Scholar 

  24. Si L, Yuan Z, Hu L, Zhu Y, Qian Y (2014) Uniform and continuous carbon coated sodium vanadium phosphate cathode materials for sodium-ion battery. J Power Sources 272:880–885

    Article  CAS  Google Scholar 

  25. Hou YK, Pan GL, Sun YY, Gao XP (2018) LiMn0.8Fe0.2PO4/carbon nanospheres@graphene nanoribbons prepared by the biomineralization process as the cathode for lithium-ion batteries. ACS Appl Mater Interfaces 10:16500–16510

    Article  CAS  PubMed  Google Scholar 

  26. Ding XK, Zhang LL, Yang XL, Fang H, Zhou YX, Wang JQ, Ma D (2017) Anthracite-derived dual-phase carbon-coated Li3V2(PO4)3 as high-performance cathode material for lithium ion batteries. ACS Appl Mater Interfaces 9:42788–42796

    Article  CAS  PubMed  Google Scholar 

  27. Zhu C, Song K, Van Aken PA, Maier J, Yu Y (2014) Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Lett 14:2175–2180

    Article  CAS  PubMed  Google Scholar 

  28. Shen W, Wang C, Liu H, Yang W (2013) Towards highly stable storage of sodium ions: a porous Na3V2(PO4)3/C cathode material for sodium-ion batteries. Chem-Eur J 19:14712–14718

    Article  CAS  PubMed  Google Scholar 

  29. Kang J, Baek S, Mathew V, Gim J, Song J, Park H, Chae E, Rai AK, Kim J (2012) High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries. J Mater Chem 22:20857–20860

    Article  CAS  Google Scholar 

  30. Jung YH, Lim CH, Kim DK (2013) Graphene-supported Na3V2(PO4)3 as a high rate cathode material for sodium-ion batteries. J Mater Chem A 1:11350–11354

    Article  CAS  Google Scholar 

  31. Kretschmer K, Sun B, Zhang J, Xie X, Liu H, Wang G (2017) 3D interconnected carbon fiber network-enabled ultralong life Na3V2(PO4)3@carbon paper cathode for sodium-ion batteries. Small 13:1603318

    Article  CAS  Google Scholar 

  32. Luo SH, Li JY, Bao S, Liu YY, Wang ZY (2018) Na3V2(PO4)3/C composite prepared by sol-gel method as cathode for sodium ion batteries. J Electrochem Soc 165:A1460–A1465

    Article  CAS  Google Scholar 

  33. Rui X, Sun W, Wu C, Yu Y, Yan Q (2015) An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Adv Mater 27:6670–6676

    Article  CAS  PubMed  Google Scholar 

  34. Song W, Ji X, Yao Y, Zhu H, Chen Q, Sun Q, Banks CE (2014) A promising Na3V2(PO4)3 cathode for use in the construction of high energy batteries. Phys Chem Chem Phys 16:3055–3061

    Article  CAS  PubMed  Google Scholar 

  35. Li S, Ge P, Zhang C, Sun W, Hou H, Ji X (2017) The electrochemical exploration of double carbon-wrapped Na3V2(PO4)3: towards long-time cycling and superior rate sodium-ion battery cathode. J Power Sources 366:249–258

    Article  CAS  Google Scholar 

  36. Chen Y, Xu Y, Sun X, Zhang B, He S, Wang C (2018) F-doping and V-defect synergetic effects on Na3V2(PO4)3/C composite: a promising cathode with high ionic conductivity for sodium ion batteries. J Power Sources 397:307–317

    Article  CAS  Google Scholar 

  37. Chen Z, Dai C, Wu G, Nelson M, Hu X, Zhang R, Liu J, Xia J (2010) High performance Li3V2(PO4)3/C composite cathode material for lithium ion batteries studied in pilot scale test. Electrochim Acta 55:8595–8599

    Article  CAS  Google Scholar 

  38. Li H, Bai Y, Wu F, Li Y, Wu C (2015) Budding willow branches shaped Na3V2(PO4)3/C nanofibers synthesized via an electrospinning technique and used as cathode material for sodium ion batteries. J Power Sources 273:784–792

    Article  CAS  Google Scholar 

  39. Sun X, Hao G-P, Lu X, Xi L, Liu B, Si W, Ma C, Liu Q, Zhang Q, Kaskel S, Schmidt OG (2016) High-defect hydrophilic carbon cuboids anchored with Co/CoO nanoparticles as highly efficient and ultra-stable lithium-ion battery anodes. J Mater Chem A 4:10166–10173

    Article  CAS  Google Scholar 

  40. Ni Q, Bai Y, Li Y, Ling L, Li L, Chen G, Wang Z, Ren H, Wu F, Wu C (2018) 3D electronic channels wrapped large-sized Na3V2(PO4)3 as flexible electrode for sodium-ion batteries. Small 14:1702864

    Article  CAS  Google Scholar 

  41. Zhao Y, Cao X, Fang G, Wang Y, Yang H, Liang S, Pan A, Cao G (2018) Hierarchically carbon-coated Na3V2(PO4)3 nanoflakes for high-rate capability and ultralong cycle-life sodium ion batteries. Chem Eng J 339:162–169

    Article  CAS  Google Scholar 

  42. Xu G, Sun G (2016) Mg2+-doped Na3V2(PO4)3/C decorated with graphene sheets: an ultrafast Na-storage cathode for advanced energy storage. Ceram Int 42:14774–14781

    Article  CAS  Google Scholar 

  43. Zhang R, Zhang Y, Zhu K, Du F, Fu Q, Yang X, Wang Y, Bie X, Chen G, Wei Y (2014) Carbon and RuO2 binary surface coating for the Li3V2(PO4)3 cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 6:12523–12530

    Article  CAS  PubMed  Google Scholar 

  44. Ling R, Cai S, Xie D, Li X, Wang M, Lin Y, Jiang S, Shen K, Xiong K, Sun X (2018) Three-dimensional hierarchical porous Na3V2(PO4)3/C structure with high rate capability and cycling stability for sodium-ion batteries. Chem Eng J 353:264–272

    Article  CAS  Google Scholar 

  45. Sun C, Rajasekhara S, Goodenough JB, Zhou F (2011) Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J Am Chem Soc 133:2132–2135

    Article  CAS  PubMed  Google Scholar 

  46. Duan W, Zhu Z, Li H, Hu Z, Zhang K, Cheng F, Chen J (2014) Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries. J Mater Chem A 2:8668–8675

    Article  CAS  Google Scholar 

  47. Zhang J, Liu W, Hu H, Li X, Huang Y, Chen T, Zhuo Y, Liu K (2018) An advanced blackberry-shaped Na3V2(PO4)3 cathode: assists in high-rate performance and long-life stability. Electrochim Acta 292:736–741

    Article  CAS  Google Scholar 

  48. Wu X-L, Jiang L-Y, Cao F-F, Guo Y-G, Wan L-J (2009) LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: superior cathode material for electrochemical energy-storage devices. Adv Mater 21:2710–2714

    Article  CAS  Google Scholar 

  49. Li L, Cheah Y, Ko Y, Teh P, Wee G, Wong C, Peng S, Srinivasan M (2013) The facile synthesis of hierarchical porous flower-like NiCo2O4 with superior lithium storage properties. J Mater Chem A 1:10935–10941

    Article  CAS  Google Scholar 

  50. Jian Z, Han W, Lu X, Yang H, Hu Y-S, Zhou J, Zhou Z, Li J, Chen W, Chen D, Chen L (2013) Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv Energy Mater 3:156–160

    Article  CAS  Google Scholar 

  51. Gao H, Jiao L, Peng W, Liu G, Yang J, Zhao Q, Zhan Q, Si Y, Wang Y, Yuan H (2011) Enhanced electrochemical performance of LiFePO4/C via Mo-doping at Fe site. Electrochim Acta 56:9961–9967

    Article  CAS  Google Scholar 

  52. An Q, Xiong F, Wei Q, Sheng J, He L, Ma D, Yao Y, Mai L (2015) Nanoflake-assembled hierarchical Na3V2(PO4)3/C microflowers: superior Li storage performance and insertion/extraction mechanism. Adv Energy Mater 5:1401963

    Article  CAS  Google Scholar 

  53. Qiao YQ, Wang XL, Xiang JY, Zhang D, Liu WL, Tu JP (2011) Electrochemical performance of Li3V2(PO4)3/C cathode materials using stearic acid as a carbon source. Electrochim Acta 56:2269–2275

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Nos. 52004129, 51674068, 51874079) and the Hebei Key Laboratory of Dielectric and Electrolyte Functional Material, Northeastern University at Qinhuangdao (No. HKDEFM2021203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-bo Huang or Shao-hua Luo.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Hb., Liu, Cl., Yang, Y. et al. Citric acid-assisted synthesis of Na3V2(PO4)3/C composite as high-performance electrode material for sodium-ion batteries. Ionics 28, 4631–4639 (2022). https://doi.org/10.1007/s11581-022-04696-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04696-z

Keywords

Navigation