Skip to main content
Log in

Solvothermal synthesis of two-dimensional graphitic carbon nitride/tungsten oxide nanocomposite: a robust electrochemical scaffold for selective determination of dopamine and uric acid

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A glassy carbon electrode was modified with a 2D-networked nanostructure composed of graphitic carbon nitride and tungsten oxide nanoparticles (2D-g-C3N4/WO3) to obtain a sensor for the concurrent determination of dopamine (DA) and uric acid (UA). The hybrid nanocomposite were prepared by a simple, one-pot pyrolysis method. The structure, morphology, and composition of g-C3N4/WO3 nanocomposites were characterized by powder X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, thus confirming the successful synthesis of this composite and its physical features. Transmission electron microscope image showed WO3 nanoparticles with a diameter of 5–7 nm that were decorated on the surface of 2D g-C3N4 nanosheets. Owing to their peculiar morphological structure, 2D g-C3N4/WO3 offers an enriched electroactive surface area (0.098 cm2) with higher heterogeneous electron transfer kinetics (K° = 4.06 × 10−6 cm s−1) enhance the electrocatalytic activity toward the DA and UA detection than the other controlled electrode. The fabricated sensor showed a wide linear response 0.05–50 µmol L−1 and 0.01–900 µmol L−1 with the lower limits of detection of 11.9 and 2.27 nmol L−1 and higher sensitivity of 38.33 and 40.30 μA µmol L−1 cm−2, for DA and UA, respectively. Furthermore, the sensor fabricated in this study proved to be stable, reproducible, and repeatable. Analyses of DA and UA in human blood serum and urine samples revealed recovery of 99.78–103.3% and relation standard deviations of less than 1%, proving that the method can be used for real-life analysis.

Graphical abstract

Graphical illustration of 2D-g-C3N4-WO3 nanocomposite synthesis and application for the electrochemical determination of dopamine (DA) and uric acid (UA) in human blood serum and urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang H, Yue Y, Chen Z, Chen Y, Wu S, Liao J, Liu S, Wen HR (2019) Electrochemical sensor based on a nanocomposite prepared from TmPO4 and graphene oxide for simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid. Microchim Acta 186:189

    Article  CAS  Google Scholar 

  2. Krishnan S, Tong L, Liu S, Xing R (2020) A mesoporous silver-doped TiO2-SnO2 nanocomposite on g-C3N4 nanosheets and decorated with a hierarchical core−shell metal-organic framework for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim Acta 187:82

    Article  CAS  Google Scholar 

  3. Zhao Y, Zhou J, Jia Z, Huo D, Liu Q, Zhong D, Hu Y, Yang M, Bian M, Hou C (2019) In-situ growth of gold nanoparticles on a 3D-network consisting of a MoS2/rGO nanocomposite for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim Acta 186:92

    Article  CAS  Google Scholar 

  4. Bai Z, Gao N, Xu H, Wang X, Tan L, Pang H, Ma H (2020) Construction of an ultra-sensitive electrochemical sensor based on polyoxometalates decorated with CNTs and AuCo nanoparticles for the voltammetric simultaneous determination of dopamine and uric acid. Microchim Acta 187:483

    Article  CAS  Google Scholar 

  5. Madhuvilakku R, Piraman S (2019) One-dimensional NiFe2O4 nanorods modified with sulfur-rich spherical carbon nanoparticles for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim Acta 186:434

    Article  CAS  Google Scholar 

  6. Govindasamy M, Chen SM, Mani V, Sathiyan A, Merlin JP, Al-Hemaid FMAA, Ali MA (2016) Simultaneous determination of dopamine and uric acid in the presence of high ascorbic acid concentration using cetyltrimethylammonium bromide polyaniline/activated charcoal composite. RSC Adv 6:100605

    Article  CAS  Google Scholar 

  7. Mariyappan V, Jeyapragasam T, Chen SM, Murugan K (2021) Mo-W-O nanowire intercalated graphene aerogel nanocomposite for the simultaneous determination of dopamine and tyrosine in human urine and blood serum sample. J Electroanal Chem 895:115391

    Article  CAS  Google Scholar 

  8. Choi T, Kim SH, Lee CW, Kim H, Choi SK, Kim SH, Kim E, Park J, Kim H (2015) Synthesis of carbon nanotube–nickel nanocomposites using atomic layer deposition for high-performance nonenzymatic glucose sensing. Biosens Bioelectron 63:325

    Article  CAS  PubMed  Google Scholar 

  9. Wang M, Zhang M, Zhu J, Wang J, Hu L, Sun T, Wang M, Tang Y (2020) g-C3N4/Co nanohybrids for ultra-sensitive simultaneous detection of uric acid and dopamine. ChemElectroChem 7:1373

    Article  CAS  Google Scholar 

  10. Luo J, Luo P, Xie M, Du K, Zhao B, Pan F, Fan P, Zeng F, Zhang Z, Liang G (2013) A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure. Biosens Bioelectron 49:512

    Article  CAS  PubMed  Google Scholar 

  11. Zhu ZG, Garcia-Gancedo L, Flewitt AJ, Xie HQ, Moussy E, Milne WI (2012) A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors 12:5996

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang L, Liu C, Wang Q, Wang X, Wang S (2020) Electrochemical sensor based on an electrode modified with porous graphitic carbon nitride nanosheets (C3N4) embedded in graphene oxide for simultaneous determination of ascorbic acid, dopamine and uric acid. Microchim Acta 187:149

    Article  CAS  Google Scholar 

  13. Chen L, Huang D, Ren S, Dong T, Chi Y, Chen G (2013) Preparation of graphite-like carbon nitride nanoflake film with strong fluorescent and electrochemiluminescent activity. Nanoscale 5:225

    Article  CAS  PubMed  Google Scholar 

  14. Anithaa AC, Asokan K, Sekar C (2017) Highly sensitive and selective serotonin sensor based on gamma ray irradiated tungsten trioxide nanoparticles. Sens Actuators B 238:667

    Article  CAS  Google Scholar 

  15. Tonda S, Kumar S, Kandula S, Shanker V (2014) Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight. J Mater Chem A 2:6772

    Article  CAS  Google Scholar 

  16. Tan L, Xu J, Zhang X, Hang Z, Jia Y, Wang S (2015) Synthesis of g-C3N4/CeO2 nanocomposites with improved catalytic activity on the thermal decomposition of ammonium perchlorate. Appl Surf Sci 356:447

    Article  CAS  Google Scholar 

  17. Zhu B, Xia P, Li Y, Ho W, Yu J (2017) Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst. Appl Surf Sci 391:175

    Article  CAS  Google Scholar 

  18. She X, Xu H, Xu Y, Yan J, Xia J, Xu L, Song Y, Jiang Y, Zhang Q, Li H (2014) Exfoliated Graphene-Like Carbon Nitride in organic solvents: the enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amount of Cu2+. J Mat Chem A 2:2563

    Article  CAS  Google Scholar 

  19. Cai X, He J, Chen L, Chen K, Li Y, Zhang K, Jin Z, Liu J, Wang C, Wang X, Wang X, Kong L, Liu J (2017) A 2D-g-C3N4 nanosheet as an eco-friendly adsorbent for various environmental pollutants in water. Chemosphere 171:192

    Article  CAS  PubMed  Google Scholar 

  20. Ogundare OD, Akinribide OJ, Adetunji AR, Adeoye MO, Olubambi PA (2019) Crystallite size determination of thermally deposited gold nanoparticles. Procedia Manuf 30:173

    Article  Google Scholar 

  21. Lu Q, Deng J, Hou Y, Wang H, Li H, Zhang Y (2015) One-step electrochemical synthesis of ultrathin graphitic carbon nitride nanosheets and their application to the detection of uric acid. Chem Commun 51:12251

    Article  CAS  Google Scholar 

  22. Adhikari S, Chandra KS, Kim DH, Madras G, Sarkar D (2018) Understanding the morphological effects of WO3 photocatalysts for the degradation of organic pollutants. Adv Powder Technol 29:1591

    Article  CAS  Google Scholar 

  23. Sumathi M, Prakasam A, Anbarasan PM (2019) High capable visible light driven photocatalytic activity of WO3/g-C3N4 hetrostructure catalysts synthesized by a novel one step microwave irradiation route. J Mater Sci Mater Electron 30:3294

    Article  CAS  Google Scholar 

  24. Kolhe PS, Shirke PS, Maiti N, More MA, Sonawane KM (2019) Facile hydrothermal synthesis of WO3 nanoconifer thin film: multifunctional behavior for gas sensing and field emission applications. J Inorg Organomet Poly Mater 29:41

    Article  CAS  Google Scholar 

  25. Madhuvilakku R, Alagar S, Mariappan R, Piraman S (2017) Green one-pot synthesis of flowers-like Fe3O4/rGO hybrid nanocomposites for effective electrochemical detection of riboflavin and low-cost supercapacitor applications. Sens Actuators B 253:879

    Article  CAS  Google Scholar 

  26. Wang X, Zhang W, Gong X, Hu X, Yao X (2019) In situ decomposition-thermal polymerization method for the synthesis of Au nanoparticle–decorated g-C3N4 nanosheets with enhanced sunlight-driven photocatalytic activity. J Nanopart Res 21:192

    Article  CAS  Google Scholar 

  27. Mitra A, Howli P, Sen D, Das B, Chattopadhyay KK (2016) Cu2O/g-C3N4 nanocomposites: an insight into the band structure tuning and catalytic efficiencies. Nanoscale 8:19099

    Article  CAS  PubMed  Google Scholar 

  28. Yan Q, Zhi N, Yang L, Xu G, Feng Q, Zhang Q, Sun S (2020) A highly sensitive uric acidelectrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modifed glassy carbon electrode. Sci Rep 10:10607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Madhuvilakku R, Alagar S, Mariappan R, Piraman S (2020) Glassy carbon electrodes modified with reduced graphene oxide-MoS2-poly (3, 4-ethylene dioxythiophene) nanocomposites for the non-enzymatic detection of nitrite in water and milk. Anal Chim Acta 1093:93

    Article  CAS  PubMed  Google Scholar 

  30. Sedlackova E, Bytesnikova Z, Birgusova E, Svec P, Ashrafi AM, Estrela P, Richtera L (2020) Lable-free DNA biosensor using modified reduced graphene oxide platform as a DNA methylation assay. Materials 13:4936

    Article  CAS  PubMed Central  Google Scholar 

  31. Minta D, Moyseowicz A, Gryglewicz S, Gryglewicz G (2020) A promising electrochemical platform for dopamine and uric acid detection based on a polyaniline/iron oxide-tin oxide/reduced graphene ternary composite. Molecules 25:5869

    Article  CAS  PubMed Central  Google Scholar 

  32. Sangili A, Vinothkumar V, Chen SM, Veerakumar P, Lin KC (2020) Gold nanoparticle embedded on a reduced graphene oxide/ polypyrrole nanocomposite: voltammetric sensing of furazolidone and flutamide. Langmuir 36:13949

    Article  CAS  PubMed  Google Scholar 

  33. Zhao GC, Zhang L, Wei XW, Yang ZS (2003) Myoglobin on multi-walled carbon nanotubes modified electrode: direct electrochemistry and electrocatalysis. ElectrochemCommun 5:525

    Google Scholar 

  34. Dinesh B, Saraswathi R, Kumar AS (2017) Water based homogenous carbon ink modified electrode as an efficient sensor system for simultaneous detection of ascorbic acid, dopamine and uric acid. ElectrochimActa 233:92

    Article  CAS  Google Scholar 

  35. Palakollu VN, Karpoormath R (2018) Enhanced electrochemical sensing of dopamine based on carboxylic acid functionalized multi-walled carbon nanotubes/poly (toluidine blue) composite. Synth Met 245:87

    Article  CAS  Google Scholar 

  36. Chen S, Huang R, Yu J, Jiang X (2019) Simultaneous voltammetric determination of hydroquinone and catechol by using a glassy carbon electrode modified with a ternary nanocomposite prepared from oxidized multiwalled carbon nanotubes, manganese dioxide and manganese ferrite. Microchim Acta 186:643

    Article  CAS  Google Scholar 

  37. Zhuang Z, Li J, Xu R, Xiao D (2011) Electrochemical detection of dopamine in the presence of ascorbic acid using overoxidized polypyrrole/graphene modified electrodes. Int J Electrochem Sci 6:2149

    CAS  Google Scholar 

  38. Su CH, Sun CL, Liao YC (2017) Printed combinatorial sensors for simultaneous detection of ascorbic acid, uric acid, dopamine and nitrite. ACS Omega 2:4245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang Y, Lei W, Xu Y, Xia X, Hao Q (2016) Simultaneous detection of dopamine and uric acid using a poly (L-lysine)/graphene oxide modified electrode. Nanomaterials 6:178

    Article  PubMed Central  CAS  Google Scholar 

  40. Uppachi P, Srijaranai S, Poosttisak S, Isa IM, Mukdasai S (2020) Superamolecular electrochemical sensor for dopamine detection based on self-assembled mixed surfactants on gold nanoparticles deposited graphene oxide. Molecules 25:2528

    Article  CAS  Google Scholar 

  41. Manikandan VS, Sidhureddy B, Thiruppathi AR, Chen A (2019) Sensitive electrochemical detection of caffeic acid in wine based on fluorine-doped graphene oxide. Sensors 19:1604

    Article  CAS  PubMed Central  Google Scholar 

  42. Thiagarajan S, Chen SM (2007) Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid. Talanta 74:212

    Article  CAS  PubMed  Google Scholar 

  43. Lin M, Huang H, Liu Y, Liang C, Fei S, Chen X, Ni C (2013) High loading of uniformly dispersed Pt nanoparticles on polydopamine coated carbon nanotubes and its application in simultaneous determination of dopamine and uric acid. Nanotechology 24:065501

    Article  Google Scholar 

  44. Xu TQ, Zhang QL, Zheng JN, Lv ZY, Wei J, Wang AJ, Feng JJ (2014) Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide. Electrochim Acta 115:109

    Article  CAS  Google Scholar 

  45. Wang J, Yang B, Zhong J, Yan B, Zhang K, Zhai C, Shiraishi Y, Du Y, Yang P (2017) Dopamine and uric acid electrochemical sensor based on a glassy carbon electrode modified with cubic Pd and reduced graphene oxide nanocomposite. J Colloid Interface Sci 497:172

    Article  CAS  PubMed  Google Scholar 

  46. Li Y, Jiang Y, Song Y, Li Y, Li S (2018) Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using a gold electrode modified with carboxylated graphene and silver nanocube functionalized poly dopamine nanospheres. Microchim Acta 185:382

    Article  CAS  Google Scholar 

  47. Shen J, Griffiths PT, Campbell SJ, Utinger B, Kalberer M, Paulson SE (2021) Ascorbate oxidation by iron, copper and reactive oxygen species: review, model development, and derivation of key rate constants. Sci Rep 11:7417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Verma S, Arya P, Singh A, Kaswan J, Shukla A, Kushwaha HR, Gupta S, Singh SP (2020) ZnO-rGO nanocomposite based bioelectronics for sensitive and ultrafast detection of dopamine in human serum. Biosens Bioelectron 165:112347

    Article  CAS  PubMed  Google Scholar 

  49. Verma S, Choudhary J, Singh KP, Chandra P, Singh SP (2019) Uricase grafted nanoconducting matrix based electrochemical biosensor for ultrafast uric acid detection in human serum samples. Int J Biol Macromol 130:333

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research has been supported by the Ministry of Science and Technology, Taiwan, under contract no. MOST 108-2221-E-027-046-MY2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Mon Yan or Yi-Kuang Yen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajesh, M., Yan, WM. & Yen, YK. Solvothermal synthesis of two-dimensional graphitic carbon nitride/tungsten oxide nanocomposite: a robust electrochemical scaffold for selective determination of dopamine and uric acid. J Appl Electrochem 52, 1231–1248 (2022). https://doi.org/10.1007/s10800-022-01699-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01699-6

Keywords

Navigation