Skip to main content

Advertisement

Log in

Effects of PEG templating of spray-pyrolyzed TiO2 films on their nanoscale roughness and eventual photoelectrochemical properties

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper reports the effects of polyethylene glycol (PEG) as a morphological template for spray-pyrolyzed TiO2 films. The virtues of PEG-modified TiO2 films as photoanodes in a photoelectrochemical (PEC) water splitting system are determined by the formation of nano-sized roughness, which is proposed to be originated from the role of PEG in controlling polycondensation of TiO2 precursor and segregating seed growth. Results in this paper, combined with those we reported earlier, show that the concentration of PEG in precursor solutions is more important than its molecular weight in enhancing the morphology of the resultant films and their eventual PEC properties. Based on PEC assessments, critical concentrations of PEG were found in the range of 25–50 mM, where nano-sized features are optimally developed and uniformly distributed across the surface. The best rough-surface TiO2 in this study managed to achieve PEC efficiency of as high as 1.23% and charge-transfer resistance of as low as 2.4 kΩ at − 0.7 V vs HgO|Hg, remarkably superior to the smooth-surface unmodified film with 0.40% efficiency and nearly 19 kΩ charge-transfer resistance at the same applied potential.

Graphical abstract

Controlled PEG templating leads to distinct characteristics of nanoscale roughness of spray-pyrolized TiO2 films, which drive their eventual photoelectrochemical output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mercado CC et al (2019) Comparison of photoelectrochemical current in amorphous and crystalline anodized tio2 nanotube electrodes. Int J Photoenergy 2019:9848740. https://doi.org/10.1155/2019/9848740

    Article  CAS  Google Scholar 

  2. Shao G, Zang Y, Hinds BJ (2019) TiO2 Nanowires Based System for Urea Photodecomposition and Dialysate Regeneration. ACS Appl Nano Mater 2(10):6116–6123. https://doi.org/10.1021/acsanm.9b00709

    Article  CAS  Google Scholar 

  3. Pandanga JJ et al (2019) Synthesis and application of TiO2 nanorods as photo-anode in dye-sensitized solar cells. J Phys: Conf Ser 1191:012023. https://doi.org/10.1088/1742-6596/1191/1/012023

    Article  CAS  Google Scholar 

  4. Xie J et al (2019) TiO2 nanotrees for the photocatalytic and photoelectrocatalytic phenol degradation. New J Chem 43(28):11050–11056. https://doi.org/10.1039/C9NJ02219H

    Article  CAS  Google Scholar 

  5. Zhang D et al (2019) Growth of black TiO2 nanowire/carbon fiber composites with dendritic structure for efficient visible-light-driven photocatalytic degradation of methylene blue. J Mater Sci 54(10):7576–7588. https://doi.org/10.1007/s10853-019-03424-9

    Article  CAS  Google Scholar 

  6. Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42(6):2294–2320. https://doi.org/10.1039/C2CS35266D

    Article  CAS  PubMed  Google Scholar 

  7. Pu P et al (2013) Relation between morphology and conductivity in TiO2 nanotube arrays: an electrochemical impedance spectrometric investigation. J Solid State Electrochem 17(3):817–828. https://doi.org/10.1007/s10008-012-1931-0

    Article  CAS  Google Scholar 

  8. Peter L (2013) Kinetics and mechanisms of light-driven reactions at semiconductor electrodes: principles and techniques in: photoelectrochemical water splitting: materials processes and architectures. R Soc Chem. https://doi.org/10.1039/9781849737739-00019

    Article  Google Scholar 

  9. Jo EH et al (2014) Pore size-controlled synthesis of PEG-derived porous TiO2 particles and photovoltaic performance of dye-sensitized solar cells. Mater Lett 131:244–247. https://doi.org/10.1016/j.matlet.2014.05.191

    Article  CAS  Google Scholar 

  10. Yu J et al (2002) Atomic force microscopic studies of porous TiO2 thin films prepared by the sol-gel method. J Sol-Gel Sci Technol 24(3):229–240. https://doi.org/10.1023/A:1015384624389

    Article  CAS  Google Scholar 

  11. Ibadurrohman M, Hellgardt K (2015) Morphological modification of TiO2 thin films as highly efficient photoanodes for photoelectrochemical water splitting. ACS Appl Mater Interfaces 7(17):9088–9097. https://doi.org/10.1021/acsami.5b00853

    Article  CAS  PubMed  Google Scholar 

  12. Yu J et al (2001) Preparation and characterization of super-hydrophilic porous TiO2 coating films. Mater Chem Phys 68(1–3):253–259. https://doi.org/10.1016/S0254-0584(00)00364-3

    Article  CAS  Google Scholar 

  13. Djaoued Y et al (2008) Photocatalytic degradation of domoic acid using nanocrystalline TiO2 thin films. J Photochem Photobiol A 193(2–3):271–283. https://doi.org/10.1016/j.jphotochem.2007.07.006

    Article  CAS  Google Scholar 

  14. Chang H et al (2013) Synthesis of PEG-modified TiO2–InVO4 nanoparticles via combustion method and photocatalytic degradation of methylene blue. Mater Lett 92:202–205. https://doi.org/10.1016/j.matlet.2012.11.006

    Article  CAS  Google Scholar 

  15. Negishi N, Takeuchi K, Ibusuki T (1998) Surface structure of the TiO2 thin film photocatalyst. Appl Surf Sci 33(24):5789–5794. https://doi.org/10.1016/S0169-4332(97)00349-8

    Article  CAS  Google Scholar 

  16. Calderon-Moreno JM et al (2014) Effect of polyethylene glycol on porous transparent TiO2 films prepared by sol–gel method. Ceram Int 40(1):2209–2220. https://doi.org/10.1016/j.ceramint.2013.07.139

    Article  CAS  Google Scholar 

  17. Guo B et al (2005) Sol gel derived photocatalytic porous TiO2 thin films. Surf Coat Technol 198(1–3):24–29. https://doi.org/10.1016/j.surfcoat.2004.10.055

    Article  CAS  Google Scholar 

  18. An T et al (2008) Structural and photocatalytic degradation characteristics of hydrothermally treated mesoporous TiO2. Appl Catal A 350(2):237–243. https://doi.org/10.1016/j.apcata.2008.08.022

    Article  CAS  Google Scholar 

  19. Jiao J et al (2008) Effect of PEG with different MW as template direction reagent on preparation of porous TiO2/SiO2 with assistance of supercritical CO2. Colloid Polym Sci 286(13):1485–1491. https://doi.org/10.1016/j.jcis.2007.08.056

    Article  CAS  Google Scholar 

  20. Liu X et al (2005) Influences of solvent on properties of TiO2 porous films prepared by a sol-gel method from the system containing PEG. J Sol-Gel Sci Technol 36(1):103–111. https://doi.org/10.1007/s10971-005-2746-6

    Article  CAS  Google Scholar 

  21. Ibadurrohman M, Hellgardt K (2014) Photoelectrochemical performance of graphene-modified TiO2 photoanodes in the presence of glycerol as a hole scavenger. Int J Hydrogen Energy 39(32):18204–18215. https://doi.org/10.1016/j.ijhydene.2014.08.142

    Article  CAS  Google Scholar 

  22. Ibadurrohman M, Hellgardt K (2020) Importance of surface roughness of TiO2 photoanodes in promoting photoelectrochemical activities with and without sacrificial agent. Thin Solid Films 705:138009. https://doi.org/10.1016/j.tsf.2020.138009

    Article  CAS  Google Scholar 

  23. Kajihara K, Yao T (2000) Macroporous morphology of the titania films prepared by a sol-gel dip-coating method from the system containing poly(ethylene glycol): effects of molecular weight and dipping temperature. J Sol-Gel Sci Technol 19(1–3):219–222. https://doi.org/10.1023/A:1008736305330

    Article  CAS  Google Scholar 

  24. Scheutjens JMHM, Fleer GJ (1979) Statistical theory of the adsorption of interacting chain molecules. 1. Partition function, segment density distribution, and adsorption isotherms. J Phys Chem 83(12):1619–1635

    Article  CAS  Google Scholar 

  25. Kajihara K et al (1998) Preparation of macroporous titania films by a sol-gel dip-coating method from the system containing poly(ethylene glycol). J Am Ceram Soc 81(10):2670–2676. https://doi.org/10.1111/j.1151-2916.1998.tb02675.x

    Article  CAS  Google Scholar 

  26. Li Y et al (2004) Synthesis and characterization of nano titania powder with high photoactivity for gas-phase photo-oxidation of benzene from TiOCl2 aqueous solution at low temperatures. Langmuir 20(25):10838–10844. https://doi.org/10.1021/la0489716

    Article  CAS  PubMed  Google Scholar 

  27. Zhou C-H et al (2012) Effect of poly (ethylene glycol) on coarsening dynamics of titanium dioxide nanocrystallites in hydrothermal reaction and the application in dye sensitized solar cells. J Colloid Interface Sci 374(1):9–17. https://doi.org/10.1016/j.jcis.2011.12.006

    Article  CAS  PubMed  Google Scholar 

  28. Poznyak SK, Kokorin AI, Kulak AI (1998) Effect of electron and hole acceptors on the photoelectrochemical behaviour of nanocrystalline microporous TiO2 electrodes. J Electroanal Chem 442(1):99–105. https://doi.org/10.1016/S0022-0728(97)00458-0

    Article  CAS  Google Scholar 

  29. Liu M, de Leon Snapp N, Park H (2011) Water photolysis with a cross-linked titanium dioxide nanowire anode. Chem Sci 2(1):80–87. https://doi.org/10.1039/C0SC00321B

    Article  CAS  Google Scholar 

  30. Zhang Z, Wang P (2012) Optimization of photoelectrochemical water splitting performance on hierarchical TiO2 nanotube arrays. Energy Environ Sci 5(4):6506–6512. https://doi.org/10.1039/C2EE03461A

    Article  CAS  Google Scholar 

  31. Salvador P (1984) Hole diffusion length in n-TiO2 single crystals and sintered electrodes: photoelectrochemical determination and comparative analysis. J Appl Phys 55(8):2977–2985. https://doi.org/10.1063/1.333358

    Article  CAS  Google Scholar 

  32. Meda L et al (2010) Photo-electrochemical properties of nanostructured WO3 prepared with different organic dispersing agents. Sol Energy Mater Sol Cells 94(5):788–796. https://doi.org/10.1016/j.solmat.2009.12.025

    Article  CAS  Google Scholar 

  33. Bu S et al (2004) Fabrication of TiO2 porous thin films using peg te1mplates and chemistry of the process. Mater Chem Phys 88(2–3):273–279. https://doi.org/10.1016/j.matchemphys.2004.03.033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the Directorate General of Higher Education (DIKTI), Indonesian Ministry of Research, Technology, and Higher Education, via a doctoral scholarship for M.I. (568/E4.4/K/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Hellgardt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibadurrohman, M., Hellgardt, K. Effects of PEG templating of spray-pyrolyzed TiO2 films on their nanoscale roughness and eventual photoelectrochemical properties. J Appl Electrochem 52, 929–940 (2022). https://doi.org/10.1007/s10800-022-01682-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01682-1

Keywords

Navigation