Skip to main content
Log in

Preparation and optimization of TiO2 photoanodes fabricated by pulsed laser deposition for photoelectrochemical water splitting

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Quasi-1D TiO2 nanostructures prepared by pulsed laser deposition (PLD) are tested as photoanodes for photoelectrochemical water splitting application and compared with TiO2 nanotube arrays prepared by anodic oxidation. PLD TiO2 films with controlled structure and morphology ranging from compact to vertically oriented or hierarchical porous nanostructures are deposited by ablating a TiO2 target with nanosecond UV laser pulses in the presence of an O2 background atmosphere at different pressures. Thermal treatments at different temperatures are used to transform the so-obtained amorphous systems into nanocrystalline structures (mainly anatase). The effect of film density and thickness is also considered by depositing different amounts of material per unit surface. The morphology and the phase composition of the samples are characterized by SEM and Raman spectroscopy, while the photoelectrochemical water splitting performances are investigated by monitoring the photocurrent generated under illumination in a three-electrode cell. Voltammetric scans and electrochemical impedance spectroscopy analysis were also used to correlate the morphology of PLD samples with their electrochemical properties and their working mechanism in the absence and presence of a light radiation. A clear correlation between structural/morphological properties and photoelectrochemical behavior is found and ideal values of the synthesis parameters are identified, which allow the identification of the optimal quasi-1D nanoporous morphology for water splitting applications. The use of sacrificial organic reagents as hole scavengers was also considered to improve the photoelectrochemical performance of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Turner J, Sverdrup G, Mann MK, Maness PC, Kroposki B, Ghirardi M, Evans RJ, Blake D (2008) Int J Energ Res 32:379–407

    Article  CAS  Google Scholar 

  2. Ball M, Wietschel M (2009) Int J Hydrog Energy 34:615–627

    Article  CAS  Google Scholar 

  3. Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Int J Hydrog Energy 27:991–1022

    Article  CAS  Google Scholar 

  4. Matsuoka M, Kitano M, Takeuchi M, Tsujimaru K, Anpo M, Thomas JM (2007) Catal Today 122:51–61

    Article  CAS  Google Scholar 

  5. Kudo A, Miseki Y (2009) Chem Soc Rev 38:253–278

    Article  CAS  Google Scholar 

  6. Navarro RM, Sánchez-Sánchez MC, Alvarez-Galvan MC, del Valle F, Fierro JLG (2009) Energy Environ Sci 2:35–54

    Article  CAS  Google Scholar 

  7. Fujishima A, Honda K (1972) Nature 238:37–38

    Article  CAS  Google Scholar 

  8. Fujishima A, Rao TN, Tryk DA (2001) J Photochem Photobiol C 1:1–21

    Article  Google Scholar 

  9. Fujishima A, Zhang X, Tryk DA (2008) Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  10. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) Renew Sust Energ Rev 11:401–425

    Article  CAS  Google Scholar 

  11. Anpo M, Takeuchi M (2003) J Catal 216:505–516

    Article  CAS  Google Scholar 

  12. Kitano M, Tsujimaru K, Anpo M (2008) Top Catal 49:4–17

    Article  CAS  Google Scholar 

  13. Chen J, Yang D, Song D, Jiang J, Ma A, Hu MZ, Ni C (2015) J Power Sources 280:649–666

    Article  CAS  Google Scholar 

  14. Lin Y, Yuan G, Liu R, Zhou S, Sheehan SW, Wang D (2011) Chem Phys Lett 507:209–215

    Article  CAS  Google Scholar 

  15. Palmas S, Polcaro AM, Rodriguez Ruiz J, Da Pozzo A, Mascia M, Vacca A (2010) Int J Hydrog Energy 35:6561–6570

    Article  CAS  Google Scholar 

  16. Palmas S, Da Pozzo A, Mascia M, Vacca A, Matarrese R, Nova I (2012) J Appl Electrochem 42:745–751

    Article  CAS  Google Scholar 

  17. Palmas S, Da Pozzo A, Delogu F, Mascia M, Vacca A, Guisbiers G (2012) J Power Sources 204:265–272

    Article  CAS  Google Scholar 

  18. Wolcott A, Smith WA, Kuykendall TR, Zhao Y, Zhang JZ (2009) Small 5:104–111

    Article  CAS  Google Scholar 

  19. Bang JH, Kamat PV (2010) Adv Funct Mater 20:1970–1976

    Article  CAS  Google Scholar 

  20. Su Y, Lee M, Wang G, Shih Y (2014) Chem Eng J 253:274–280

    Article  CAS  Google Scholar 

  21. Feng X, Shankar K, Varghese OK, Paulose M, Latempa TJ, Grimes CA (2008) Nano Lett 8:3781–3786

    Article  CAS  Google Scholar 

  22. Liu M, de Leon SN, Park H (2011) Chem Sci 2:80–87

    Article  CAS  Google Scholar 

  23. Sánchez-Tovar R, Lee K, García-Antón J, Schmuki P (2013) ECS Electrochem Lett 2:H9–H11

    Article  Google Scholar 

  24. Sánchez-Tovar R, Fernández-Domene RM, García-García DM, García-Antón J (2015) J Power Sources 286:224–231

    Article  Google Scholar 

  25. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) Sol Energ Mat Sol C 90:2011–2075

    Article  CAS  Google Scholar 

  26. Shankar K, Basham JI, Allam NK, Varghese OK, Mor GK, Feng X, Paulose M, Seabold JA, Choi KS, Grimes CA (2009) J Phys Chem C 113:6327–6359

    Article  CAS  Google Scholar 

  27. Roy P, Berger S, Schmuki P (2011) Angew Chem Int Ed 50:2904–2939

    Article  CAS  Google Scholar 

  28. Paramasivam I, Jha H, Liu N, Schmuki P (2012) Small 8:3073–3103

    Article  CAS  Google Scholar 

  29. Kowalski D, Kim D, Schmuki P (2013) Nano Today 8:235–264

    Article  CAS  Google Scholar 

  30. Liu N, Chen X, Zhang J, Schwank JW (2014) Catal Today 225:34–51

    Article  CAS  Google Scholar 

  31. Sauvage F, Di Fonzo F, Li Bassi A, Casari CS, Russo V, Divitini G, Ducati C, Bottani CE, Comte P, Graetzel M (2010) Nano Lett 10:2562–2567

    Article  CAS  Google Scholar 

  32. Passoni L, Ghods F, Docampo P, Abrusci A, Martí-Rujas J, Ghidelli M, Divitini G, Ducati C, Binda M, Guarnera S, Li Bassi A, Casari CS, Snaith HJ, Petrozza A, Di Fonzo F (2013) ACS Nano 7:10023–10031

    Article  CAS  Google Scholar 

  33. Casari CS, Li Bassi A (2014) In: Srivastava AK (ed) Oxide nanostructures: growth, microstructures and properties. Pan Stanford Publishing, Singapore, pp 99–114

    Chapter  Google Scholar 

  34. Di Fonzo F, Casari CS, Russo V, Brunella MF, Li Bassi A, Bottani CE (2009) Nanotechnology 20(015604):1–7

    Google Scholar 

  35. Gondoni P, Ghidelli M, Di Fonzo F, Carminati M, Russo V, Li Bassi A, Casari CS (2012) Nanotechnology 23(365706):1–8

    Google Scholar 

  36. Gondoni P, Ghidelli M, Di Fonzo F, Russo V, Bruno P, Martí-Rujas J, Bottani CE, Li Bassi A, Casari CS (2013) Nanosci Nanotechnol Lett 5:484–486

    Article  CAS  Google Scholar 

  37. Matarrese R, Nova I, Li Bassi A, Casari CS, Russo V (2014) Chem Eng Trans 41:313–318

    Google Scholar 

  38. Patsoura A, Kondarides DI, Verykios XE (2007) Catal Today 124:94–102

    Article  CAS  Google Scholar 

  39. Lianos P (2011) J Hazard Mater 185:575–590

    Article  CAS  Google Scholar 

  40. Palmas S, Da Pozzo A, Mascia M, Vacca A, Ardu A, Matarrese R, Nova I (2011) Int J Hydrog Energy 36:8894–8901

    Article  CAS  Google Scholar 

  41. Zalas M, Laniecki M (2005) Sol Energ Mat Sol C 89:287–296

    Article  CAS  Google Scholar 

  42. Hidalgo MC, Maicu M, Navío JA, Colón G (2007) Catal Today 129:43–49

    Article  CAS  Google Scholar 

  43. Obregón S, Colón G (2014) Appl Catal B Environ 144:775–782

    Article  Google Scholar 

  44. Liu J, Yu X, Liu Q, Liu R, Shang X, Zhang S, Li W, Zheng W, Zhang G, Cao H, Gu Z (2014) Appl Catal B Environ 158-159:296–300

    Article  CAS  Google Scholar 

  45. Radecka M, Wnuk A, Trenczek-Zajac A, Schneider K, Zakrzewska K (2015) Int J Hydrog Energy 40:841–851

    Article  CAS  Google Scholar 

  46. Gannouni M, Ben Assaker I, Chtourou R (2015) Int J Hydrog Energy 40:7252–7259

    Article  CAS  Google Scholar 

  47. Bailini A, Di Fonzo F, Fusi M, Casari CS, Li Bassi A, Russo V, Baserga A, Bottani CE (2007) Appl Surf Sci 253:8130–8135

    Article  CAS  Google Scholar 

  48. Li Bassi A, Cattaneo D, Russo V, Bottani CE, Barborini E, Mazza T, Piseri P, Milani P, Ernst FO, Wegner K, Pratsinis SE (2005) J Appl Phys 98(074305):1–9

    Google Scholar 

  49. Matarrese R, Palmas S, Nova I, Li Bassi A, Casari C, Russo V, Mascia M, Vacca A (2014) Chem Eng Trans 41:397–402

    Google Scholar 

  50. Zhou B, Schulz M, Lin HY, Shah SI, Qu J, Huang CP (2009) Appl Catal B Environ 92:41–49

    Article  CAS  Google Scholar 

  51. Cowan AJ, Tang J, Leng W, Durrant JR, Klug DR (2010) J Phys Chem C 114:4208–4214

    Article  CAS  Google Scholar 

  52. Spadavecchia F, Ardizzone S, Cappelletti G, Falciola L, Ceotto M, Lotti D (2013) J Appl Electrochem 43:217–225

    Article  CAS  Google Scholar 

  53. Song XM, Wu JM, Tang MZ, Qi B, Yan M (2008) J Phys Chem C 112:19484–19492

    Article  CAS  Google Scholar 

  54. Xu Z, Yu J (2011) Nano 3:3138–3144

    CAS  Google Scholar 

  55. Zhang K, Shi XJ, Kim JK, Park JH (2012) Phys Chem Chem Phys 14:11119–11124

    Article  CAS  Google Scholar 

  56. Khan SUM, Al-Shahry M, Ingler WB Jr (2002) Science 297:2243–2245

    Article  CAS  Google Scholar 

  57. Varghese OK, Grimes CA (2008) Sol Energ Mat Sol C 92:374–384

    Article  CAS  Google Scholar 

  58. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2005) Nano Lett 5:191–195

    Article  CAS  Google Scholar 

  59. Allam NK, El-Sayed MA (2010) J Phys Chem C 114:12024–12029

    Article  CAS  Google Scholar 

  60. Kondarides DI, Daskalaki VM, Patsoura A, Verykios XE (2008) Catal Lett 122:26–32

    Article  CAS  Google Scholar 

  61. Bowker M (2012) Catal Lett 142:923–929

    Article  CAS  Google Scholar 

  62. Li Y, Wang B, Liu S, Duan X, Hu Z (2015) Appl Surf Sci 324:736–744

    Article  CAS  Google Scholar 

  63. Chen WT, Chan A, Al-Azri ZHN, Dosado AG, Nadeem MA, Sun-Waterhouse D, Idriss H, Waterhous GIN (2015) J Catal 329:499–513

    Article  CAS  Google Scholar 

  64. Kumar DP, Reddy NL, Srinivas B, Durgakumari V, Roddatis V, Bondarchuk O, Karthik M, Ikuma Y, Shankar MV (2016) Sol Energy Mater Sol Cells 146:63–71

    Article  Google Scholar 

  65. Strataki N, Antoniadou M, Dracopoulos V, Lianos P (2010) Catal Today 151:53–57

    Article  CAS  Google Scholar 

  66. Antoniadou M, Bouras P, Strataki N, Lianos P (2008) Int J Hydrog Energy 33:8894–8901

    Article  Google Scholar 

  67. Ohno T, Tokieda K, Higashida S, Matsumura M (2003) Appl Catal A Gen 244:383–391

    Article  CAS  Google Scholar 

  68. Zhang J, Xu Q, Feng Z, Li M, Li C (2008) Angew Chem 120:1790–1793

    Article  Google Scholar 

  69. Shen S, Wang X, Chen T, Feng Z, Li C (2014) J Phys Chem C 118:12661–12668

    Article  CAS  Google Scholar 

  70. Song G, Luo C, Fu Q, Pan C (2016) RSC Adv 6:84035–84041

    Article  CAS  Google Scholar 

  71. Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P (2007) Curr Opin Solid St M 11:3–18

    Article  CAS  Google Scholar 

  72. Shankar K, Mor GK, Prakasam HE, Yoriya S, Paulose M, Varghese OK, Grimes CA (2007) Nanotechnology 18(065707):1–11

    Google Scholar 

  73. Aurora P, Rhee P, Thompson L (2010) J Electrochem Soc 157:K152–K155

    Article  CAS  Google Scholar 

  74. Altomare M, Lee K, Killian MS, Selli E, Schmuki P (2013) Chem Eur J 19:5841–5844

    Article  CAS  Google Scholar 

  75. Thimsen E, Rastgar N, Biswas P (2008) J Phys Chem C 112:4134–4140

    Article  CAS  Google Scholar 

  76. Palmas S, Da Pozzo A, Mascia M, Vacca A, Ricci PC, Matarrese R (2012) J Solid State Electrochem 16:2493–2502

    Article  CAS  Google Scholar 

  77. Palmas S, Da Pozzo A, Mascia M, Vacca A, Matarrese R (2012) Int J Photoenergy 914757:1–7

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank G. D’Ambrosio for participating in the experimental measurements and to acknowledge the FARB project of the Dept. of Energy, Politecnico di Milano, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella Nova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matarrese, R., Nova, I., Li Bassi, A. et al. Preparation and optimization of TiO2 photoanodes fabricated by pulsed laser deposition for photoelectrochemical water splitting. J Solid State Electrochem 21, 3139–3154 (2017). https://doi.org/10.1007/s10008-017-3639-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3639-7

Keywords

Navigation