Skip to main content

Advertisement

Log in

Efficient synthesis of enwrapped CuO@rGO nanowire arrays to improve supercapacitor electrode performance

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

There has been a growing interest in the performance of supercapacitors (SCs) based on Transition Metal Oxides (TMOs). It has recently been included in long-term energy storage and lightweight devices. The primary goal of this research is to improve the conductivity of CuO nanowire to increase its performance. We have successfully synthesized a wet chemical utilizing a dipping approach in this paper. rGO nanosheet layers were uniformly coated on CuO nanowire arrays. As long as positive, stable pathways for rapid ion or electron transport exist, the presence of atoms in rGO that will diffuse into the CuO lattice may improve the electrical conductivity of the CuO electrode. Furthermore, the surface area of the CuO@rGO-20 s electrode was also increased following rGO coating, resulting in more active sites. As a result, CuO@rGO-20 s electrode had a significantly greater areal capacitance of 1165 mF cm−2, which was 2.4 times higher than pristine CuO NWAs and excellent extended cycling performance 119% after 2000 cycles as a pseudocapacitive electrode. Overall, our data indicate that enhancing TMOs electrode performance has a considerable impact.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hsu YW, Hsu TK, Sun CL, Nien YT, Pu NW, Der Ger M (2012) Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical glucose biosensor applications. Electrochim Acta 82:152–157. https://doi.org/10.1016/j.electacta.2012.03.094

    Article  CAS  Google Scholar 

  2. JieBai LY, Dai B, Ding Y, Wang Q, Han J, Zhu J (2018) Synthesis of CuO-Cu2O@graphene nanosheet arrays with accurate hybrid nanostructures and tunable electrochemical properties. Appl Surf Sci 452:259–267. https://doi.org/10.1016/j.apsusc.2018.05.062

    Article  CAS  Google Scholar 

  3. Barth S, Ramirez FH, Holmes JD, Rodriguez AR (2010) Synthesis and applications of one dimensional semiconductors. Prog Mater Sci 55:563–627. https://doi.org/10.1016/j.pmatsci.2010.02.001

    Article  CAS  Google Scholar 

  4. Kim DW, Rhee KY, Park SJ (2012) Synthesis of activated carbon nanotube/copper oxide composites and their electrochemical performance. J Alloy Compd 530:6–10. https://doi.org/10.1016/j.jallcom.2012.02.157

    Article  CAS  Google Scholar 

  5. Majumdar D, Baugh N, Bhattacharya SK (2017) Ultrasound assisted formation of reduced graphene oxide-copper (II) oxide nanocomposite for energy storage applications. Colloids Surf A: Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2016.10.010

    Article  Google Scholar 

  6. Ghosh A, Miah M, Bera A, Saha SK, Ghosh B (2021) Synthesis of freestanding 2D CuO nanosheets at room temperature through a simple surfactant free co-precipitation process and its application as electrode material in supercapacitors. RSC Adv 10:36554. https://doi.org/10.1016/j.jallcom.2020.158549

    Article  CAS  Google Scholar 

  7. Majumdar D, Ghosh S (2021) Recent advancements of copper oxide based nanomaterials for supercapacitor applications. J Energy Storage 34:101995. https://doi.org/10.1016/j.est.2020.101995

    Article  Google Scholar 

  8. Jia W, Reitz E, Sun H, Li B, Zhang H, Lei Yu (2009) From Cu2 (OH)3Cl to nanostructured sisal like Cu(O.H.)2 and CuO synthesis and characterization. J Appl Phys 105:6917. https://doi.org/10.1063/1.3097286

    Article  CAS  Google Scholar 

  9. Vidhyadharan B, Misnon II, Aziz RA, Padmasree KP, Yusoff MM, Jose R (2014) Superior supercapacitive performance in electrospun copper oxide nanowire electrodes. J Mater Chem A2:6578–6588. https://doi.org/10.1039/C3TA15304E

    Article  Google Scholar 

  10. Zhang J, Zhao XS (2012) Conducting polymers directly coated on reduced graphene oxide sheets as high performance supercapacitor electrodes. J Phys Chem C 116:5420–5426. https://doi.org/10.1021/jp211474e

    Article  CAS  Google Scholar 

  11. Vangari M, Pryor T, Jiang Li (2013) Supercapacitors: review of materials and fabrication methods. J Energy Eng 139:72–79. https://doi.org/10.1061/(ASCE)EY

    Article  Google Scholar 

  12. Chen GZ (2016) Supercapacitor, and supercapattery as emerging electrochemical energy stores. Int Mater Rev 62:173–202. https://doi.org/10.1080/09506608.2016.1240914

    Article  CAS  Google Scholar 

  13. Jun YW, Choi JS, Cheon J (2006) Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew Chem Int Ed 45:3414–3439. https://doi.org/10.1002/anie.200503821

    Article  CAS  Google Scholar 

  14. Cross A, Morel A, Cormie A, Hollenkamp T, Donne S (2011) Enhanced manganese dioxide supercapacitor electrodes produced by electrodeposition. J Power Sources 196:7847–7853. https://doi.org/10.1016/j.jpowsour.2011.04.049

    Article  CAS  Google Scholar 

  15. Ko Y, Shim J, Lee CH, Lee KS, Cho H, Lee KT, Son DI (2018) Synthesis and characterization of CuO/graphene (Core/shell) quantum dots for electrochemical applications. Mater Lett 217:113–116. https://doi.org/10.1016/j.matlet.2018.01.042

    Article  CAS  Google Scholar 

  16. Lee C, Bae J (2018) Room temperature growth farming and high performance supercapacitor applications of highly crystalline CuO nanowires/graphene nanoplatelet nanopowders. Mater Electron 29:15097–15105. https://doi.org/10.1007/s10854-018-9650-7

    Article  CAS  Google Scholar 

  17. Wang GH, Chen J, Gao S, CaoDianxue Y (2011) Preparation and super capacitance of CuO nanosheet arrays grown on nickel foam. J Power Sources 196:5756–5760. https://doi.org/10.1016/j.jpowsour.2011.02.049

    Article  CAS  Google Scholar 

  18. Li J, Östling M (2013) Prevention of graphene restacking for performance boost of supercapacitors review. Curr Comput-Aided Drug Des 3:163–190. https://doi.org/10.3390/cryst3010163

    Article  CAS  Google Scholar 

  19. Jangu S, Satpathy BK, Raju M, Jacoba C, Pradhan D (2021) Synthesis of V-shaped MnO2 nanostructure and its composites with reduced graphene oxide for supercapacitor application. Dalton Trans 50:6878–6888. https://doi.org/10.1039/d1dt00422k

    Article  CAS  PubMed  Google Scholar 

  20. Arvas MB, Gencten M, Sahin Y (2021) One-step synthesized N-doped graphene-based electrode materials for supercapacitor applications. Ionics 27:2241–2256. https://doi.org/10.1007/s11581-021-03986-2

    Article  CAS  Google Scholar 

  21. Arvas MB, Karatepe N, Gencten M, Sahin Y (2021) Fabrication of high-performance symmetrical coincell supercapacitors by using one step and green synthesis sulfur doped graphene powders. New J Chem 45:6928–6939. https://doi.org/10.1039/d0nj06061

    Article  CAS  Google Scholar 

  22. Jiang D, Li C, Yang W, Zhangb J, Liu J (2017) Fabrication of an arbitrary-shaped and nitrogendoped graphene aerogel for highly compressible all solid-state supercapacitors. J Mater Chem A 5:18684–18690. https://doi.org/10.1039/c7ta04917

    Article  CAS  Google Scholar 

  23. Arvas MB, Gençten M, Sahin Y (2019) A two dimensional material for high capacity supercapacitors: S-doped graphene. Int J Energy Res 44:1624–1635. https://doi.org/10.1002/er.4973

    Article  CAS  Google Scholar 

  24. Zhang X, Zhou J, Abas A, Lan W, Xie E, Zhang C (2018) Room-temperature vertically-aligned copper oxide nanoblades synthesized by electrochemical restructuring of copper hydroxide nanorods: an electrode for high energy density hybrid device. J Power Sources 383:124–132. https://doi.org/10.1016/j.jpowsour.2018.02.016

    Article  CAS  Google Scholar 

  25. Zhao CJ, Shao XX, Zhang YX, Qian XZ (2016) Fe2O3/reduced graphene oxide/Fe3O4 composite in situ grown on Fe foil for high-performance supercapacitors. Appl Mater Interfaces. https://doi.org/10.1021/acsami.6b09594

    Article  Google Scholar 

  26. Gao X, Jang J, Nagase S (2010) Hydrazine and thermal reduction of graphene oxide reaction mechanisms, product structures, and reaction design. J Phys Chem C 114:832–842. https://doi.org/10.1021/jp909284g

    Article  CAS  Google Scholar 

  27. Li Y, Wang X, Yang Q, Javed MS, Liu Q, Xu W, Hu C, Wei D (2017) Ultra fine CuO nanoparticles embedded in three dimensional graphene network nanostructure for high performance flexible supercapacitors. Electrochim Acta 234:63–70. https://doi.org/10.1016/j.electacta.2017.02.167

    Article  CAS  Google Scholar 

  28. Zou X, Zhou Y, Wang Z, Chen S, Li W, Xiang B, XuZhu LS, Hou J (2018) Freestanding, layered graphene monoliths for long life supercapacitor. Chem Eng J 350:386–394. https://doi.org/10.1016/j.cej.2018.05.136

    Article  CAS  Google Scholar 

  29. Zhang Q, Zhang K, XuYang DGC, Huang H, Nie F, Liu C, Yang S (2014) CuO nanostructures synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater 60:208–337. https://doi.org/10.1016/j.pmatsci.2013.09.003

    Article  CAS  Google Scholar 

  30. Pourbeyram S, Bayrami R, Dadkhah H (2017) Green synthesis and characterization of ultrafine copper oxide reduced graphene oxide (CuO/rGO) nanocomposite. Colloids Surf A 529:73–79. https://doi.org/10.1016/j.colsurfa.2017.05.077

    Article  CAS  Google Scholar 

  31. Zhaoa T, Yanga W, Zhao X, Peng X, Hu J, Tang C, Li T (2018) Facile preparation of reduced graphene oxide/copper sulfide composite as electrode materials for supercapacitors with high energy density. Compos Eng 150:60–67. https://doi.org/10.1016/j.colsurfa.2017.05.077

    Article  CAS  Google Scholar 

  32. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruof RS (2015) Graphene, related two dimensional crystals, and hybrid systems for energy conversion and storage. Science 347:1246501. https://doi.org/10.1126/science.1246501

    Article  CAS  PubMed  Google Scholar 

  33. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Yuan J (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  34. Shirasaki T, Derre A, Menetrier M, Tressaud A, Flandrois S (2000) Synthesis and characterization of boron substituted carbons. Carbon 38:1461–1467. https://doi.org/10.1016/S0008-6223(99)00279-1

    Article  CAS  Google Scholar 

  35. Liao Y, Wang H, Zhu M, Thomas A (2018) Efficient supercapacitor energy storage using conjugated microporous polymer networks synthesized from Buchwald Hartwig coupling. Adv Mater 30:e1705710. https://doi.org/10.1002/adma.201705710

    Article  CAS  PubMed  Google Scholar 

  36. Lee M, Wee B-H, Dal Hong J (2015) High performance flexible supercapacitor electrodes composed of ultralarge graphene sheets and vanadium dioxide. Adv Energy Mater 5:1401890. https://doi.org/10.1002/aenm.201401890

    Article  CAS  Google Scholar 

  37. Chen J, Xu J, Zhou S, Zhao N, Wong C-P (2015) Facile and scalable fabrication of three-dimensional Cu(OH) (2) nanoporous nanorods for solid-state supercapacitors. J Mater Chem A 3:17385–17391. https://doi.org/10.1039/C5TA04164C

    Article  CAS  Google Scholar 

  38. Li YH, Chang S, Liu XL, Huang JC, Yin JL, Wang GL, Cao DX (2012) Nanostructured CuO directly grown on copper foam and their supercapacitance performance. Electrochim Acta 85:393–398. https://doi.org/10.1016/j.electacta.2012.07.127

    Article  CAS  Google Scholar 

  39. Abas A, Sheng H, Yonglu M, Zhang X, Wei Y, Qing Su, Lan W, Xie E (2019) PEDOT: PSS coated CuO nanowire arrays grown on Cu foam for high-performance supercapacitor electrodes. J Mater Sci: Mater Electron 30:10953–10960. https://doi.org/10.1007/s10854-019-01469-9

    Article  CAS  Google Scholar 

  40. Lan W, Zhang X, Zhai A, Meng W, Sheng H, Dou W, Zhang CJ, Su Q, Zhou J, Xie E (2019) Flexible CuO nanotube arrays composite electrodes for wire-shaped supercapacitors with robust electrochemical stability. Chem Eng J 374:181–188. https://doi.org/10.1016/j.cej.2019.05.169

    Article  CAS  Google Scholar 

  41. Zou XF, Zhou Y, Wang Z, Chen S, poLi W, Xiang B, Xu L, Zhu S, Hou J (2018) Freestanding, layered graphene monoliths for longlife supercapacitor. Chem Eng J 350:386–394. https://doi.org/10.1016/j.cej.2018.05.136

    Article  CAS  Google Scholar 

  42. Zhao T, Yang W, Zhao X, Peng X, Hu J, Tang C, Li T (2018) Facile preparation of reduced graphene oxide/copper sulfide composite as electrode materials for supercapacitors with high energy density. Chem Eng J 150:60–67. https://doi.org/10.1016/j.compositesb.2018.05.058

    Article  CAS  Google Scholar 

  43. Kim YH, Heo JS, Kim TH, Park S, Yoon MH, Kim J, Min Suk Oh, Yi GR, Noh YY, Park SK (2012) Flexible metal oxide devices made by room temperature photochemical activation of sol gel films. Nature. https://doi.org/10.1038/nature11434

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China (61874166, U1832149), the Natural Science Foundation of Gansu province (18JR3RA292), and the Fundamental Research Funds for the Central Universities (lzujbky-2017-k21) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim Abas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 671 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abas, A., Omer, A.A.A., Wei, l. et al. Efficient synthesis of enwrapped CuO@rGO nanowire arrays to improve supercapacitor electrode performance. J Appl Electrochem 52, 813–820 (2022). https://doi.org/10.1007/s10800-022-01670-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01670-5

Keywords

Navigation