Skip to main content

Advertisement

Log in

Efficient electrochemical oxidation of reactive dye using a novel Ti/nanoZnO–CuO anode: electrode characterization, modeling, and operational parameters optimization

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

A Correction to this article was published on 02 November 2021

This article has been updated

Abstract

In the current study, electrochemical removal of reactive orange 7 (RO7) dye in aqueous solution was examined over a novel Ti/nanoZnO–CuO electrode prepared through electrophoretic deposition technique. Surface morphology, crystal structure, and elemental investigation of the prepared electrode were done by Field emission scanning electron microscopy, X-ray energy dispersive spectrometry, and X-ray diffraction analysis, which confirmed the presence of CuO nanoparticles along with ZnO nanoparticles in uniform coated layer. Besides, some electrochemical properties of the Ti/nanoZnO–CuO electrode were evaluated applying linear sweep voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy analysis. Based on these analyses, the Ti/nanoZnO–CuO electrode behaves as a non-active electrode as well as it possessed smaller charge-transfer resistance and higher current density than Ti and Ti/nanoZnO electrodes. Further, chrono-amperometry along with chrono-potentiometry tests were conducted to assess the novel electrode stability and service lifetime. Obtained results indicated the presence of CuO nanoparticles conducive to the enhancement of stability and conductivity properties. To evaluate the prepared electrode performance and optimize the removal process, four independent variables of pH, electrolyte concentration, current, and reaction time as inputs along with RO7 removal efficiency as response function in central composite design were investigated. Under optimal conditions, the RO7 removal efficiency and chemical oxygen demand of 99.16% and 66.66% were obtained after 60 min for Ti/nanoZnO–CuO electrode. According to the obtained results, Ti/nanoZnO–CuO electrode can be used in the electrochemical treatment of organic pollutants as a promising electrode.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. Ansari A, Nematollahi D (2018) A comprehensive study on the electrocatalytic degradation, electrochemical behavior and degradation mechanism of malachite green using electrodeposited nanostructured β-PbO2 electrodes. Water Res 144:462–473

    Article  CAS  PubMed  Google Scholar 

  2. Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B 166:603–643

    Article  Google Scholar 

  3. Aquino JM, Rocha-Filho RC, Ruotolo LA, Bocchi N, Biaggio SR (2014) Electrochemical degradation of a real textile wastewater using β-PbO2 and DSA® anodes. Chem Eng J 251:138–145

    Article  CAS  Google Scholar 

  4. Dhote J, Ingole S, Chavhan A (2012) Review on waste water treatment technologies. Int J Eng Res Technol 1:1–10

    Google Scholar 

  5. Martínez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B 87(3–4):105–145

    Article  Google Scholar 

  6. Chianeh FN, Parsa JB (2015) Degradation of azo dye in aqueous solution using Ti anode coated with MWCNTs–TiO2. J Iran Chem Soc 12(1):175–182

    Article  Google Scholar 

  7. Ganiyu SO, Martinez-Hutile CA, Oturan MA (2020) Electrochemical advanced oxidation processes for wastewater treatment: advances in formation and detection of reactive species and mechanisms. Curr Opin Electrochem 27:100678

    Article  Google Scholar 

  8. Berenguer R, Sieben JM, Quijada C, Morallón E (2016) Electrocatalytic degradation of phenol on Pt-and Ru-doped Ti/SnO2–Sb anodes in an alkaline medium. Appl Catal B 199:394–404

    Article  CAS  Google Scholar 

  9. Wang Y, Shen C, Zhang M, Zhang B-T, Yu Y-G (2016) The electrochemical degradation of ciprofloxacin using a SnO2–Sb/Ti anode: influencing factors, reaction pathways and energy demand. Chem Eng J 296:79–89

    Article  CAS  Google Scholar 

  10. Hu Z, Cai J, Song G, Tian Y, Zhou M (2020) Anodic oxidation of organic pollutants: anode fabrication, process hybrid and environmental applications. Curr Opin Electrochem 26:100659

    Article  Google Scholar 

  11. Kim SP, Choi MY, Choi HC (2016) Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation. Mater Res Bull 74:85–89

    Article  CAS  Google Scholar 

  12. Wu W, Huang Z-H, Hu Z-T, He C, Lim T-T (2017) High performance duplex-structured SnO2–Sb–CNT composite anode for bisphenol A removal. Sep Purif Technol 179:25–35

    Article  CAS  Google Scholar 

  13. Salazar-Banda GR, Santos GDOS, Gonzaga IMD, Dória AR, Eguiluz KIB (2020) Developments in electrode materials for wastewater treatment. Curr Opin Electrochem 26:100663

    Article  Google Scholar 

  14. Dai Q, Zhou J, Weng M, Luo X, Feng D, Chen J (2016) Electrochemical oxidation metronidazole with Co modified PbO2 electrode: degradation and mechanism. Sep Purif Technol 166:109–116

    Article  CAS  Google Scholar 

  15. Wang C, Yin L, Xu Z, Niu J, Hou L-A (2017) Electrochemical degradation of enrofloxacin by lead dioxide anode: kinetics, mechanism and toxicity evaluation. Chem Eng J 326:911–920

    Article  CAS  Google Scholar 

  16. Chen X, Huang Y, Zhang X, Li C, Chen J, Wang K (2015) Graphene supported ZnO/CuO flowers composites as anode materials for lithium ion batteries. Mater Lett 152:181–184

    Article  CAS  Google Scholar 

  17. Das S, Srivastava VC (2017) Synthesis and characterization of ZnO/CuO nanocomposite by electrochemical method. Mater Sci Semicond Process 57:173–177

    Article  CAS  Google Scholar 

  18. Chauhan M, Sharma B, Kumar R, Chaudhary GR, Hassan AA, Kumar S (2019) Green synthesis of CuO nanomaterials and their proficient use for organic waste removal and antimicrobial application. Environ Res 168:85–95

    Article  CAS  PubMed  Google Scholar 

  19. Raul PK, Senapati S, Sahoo AK, Umlong IM, Devi RR, Thakur AJ, Veer V (2014) CuO nanorods: a potential and efficient adsorbent in water purification. RSC Adv 4(76):40580–40587

    Article  CAS  Google Scholar 

  20. Nabizadeh Chianeh F, Basiri Parsa J (2016) Decolorization of azo dye CI Acid Red 33 from aqueous solutions by anodic oxidation on MWCNTs/Ti electrodes. Desalin Water Treat 57(43):20574–20581

    Article  CAS  Google Scholar 

  21. Song Q, Li M, Wang L, Ma X, Liu F, Liu X (2019) Mechanism and optimization of electrochemical system for simultaneous removal of nitrate and ammonia. J Hazard Mater 363:119–126

    Article  CAS  PubMed  Google Scholar 

  22. Vepsäläinen M, Ghiasvand M, Selin J, Pienimaa J, Repo E, Pulliainen M, Sillanpää M (2009) Investigations of the effects of temperature and initial sample pH on natural organic matter (NOM) removal with electrocoagulation using response surface method (RSM). Sep Purif Technol 69(3):255–261

    Article  Google Scholar 

  23. Mahmoudian F, Chianeh FN, Sajjadi SM (2021) Simultaneous electrochemical decolorization of Acid Red 33, Reactive Orange 7, Acid Yellow 3 and Malachite Green dyes by electrophoretically prepared Ti/nanoZnO–MWCNTs anode: experimental design. J Electroanal Chem 884:115066

    Article  CAS  Google Scholar 

  24. Abdoulyousefi FM, Chianeh FN, Asghari A (2020) Application of a novel Ti/nanoSnO2-α-Fe2O3 anode for the electro-catalytic degradation of dye pollutant: optimization of operational parameters by central composite design. J Electrochem Soc 167(10):103507

    Article  CAS  Google Scholar 

  25. Yue H, Xue L, Chen F (2017) Efficiently electrochemical removal of nitrite contamination with stable RuO2–TiO2/Ti electrodes. Appl Catal B 206:683–691

    Article  CAS  Google Scholar 

  26. Zhang C, Tang J, Peng C, Jin M (2016) Degradation of perfluorinated compounds in wastewater treatment plant effluents by electrochemical oxidation with Nano-ZnO coated electrodes. J Mol Liq 221:1145–1150

    Article  CAS  Google Scholar 

  27. An SJ, Zhu Y, Lee SH, Stoller MD, Emilsson T, Park S, Velamakanni A, An J, Ruoff RS (2010) Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. J Phys Chem Lett 1(8):1259–1263

    Article  CAS  Google Scholar 

  28. Renuka L, Anantharaju K, Vidya Y, Nagaswarupa H, Prashantha S, Nagabhushana H (2017) Synthesis of sunlight driven ZnO/CuO nanocomposite: characterization, optical, electrochemical and photocatalytic studies. Mater Today Proc 4(11):11782–11790

    Article  Google Scholar 

  29. Li L, Huang Z, Fan X, Zhang Z, Dou R, Wen S, Chen Y, Chen Y, Hu Y (2017) Preparation and characterization of a Pd modified Ti/SnO2–Sb anode and its electrochemical degradation of Ni-EDTA. Electrochim Acta 231:354–362

    Article  CAS  Google Scholar 

  30. Duan X, Sui X, Wang W, Bai W, Chang L (2019) Fabrication of PbO2/SnO2 composite anode for electrochemical degradation of 3-chlorophenol in aqueous solution. Appl Surf Sci 494:211–222

    Article  CAS  Google Scholar 

  31. Wang X, Zhou Y, Tuo Y, Lin Y, Yan Y, Chen C, Li Y, Zhang J (2019) Synthesis and identifying the active site of Cu2Se@ CoSe nano-composite for enhanced electrocatalytic oxygen evolution. Electrochim Acta 320:134589

    Article  CAS  Google Scholar 

  32. Yang Y, Cui L, Li M, Yao Y (2019) Electrochemical removal of metribuzin in aqueous solution by a novel PbO2/WO3 composite anode: characterization, influencing parameters and degradation pathways. J Taiwan Inst Chem Eng 102:170–181

    Article  CAS  Google Scholar 

  33. Aromaa J, Forsén O (2006) Evaluation of the electrochemical activity of a Ti–RuO2–TiO2 permanent anode. Electrochim Acta 51(27):6104–6110

    Article  CAS  Google Scholar 

  34. Chen A, Xia S, Pan H, Xi J, Qin H, Lu H, Ji Z (2018) A promising Ti/SnO2 anodes modified by Nb/Sb co-doping. J Electroanal Chem 824:169–174

    Article  CAS  Google Scholar 

  35. Rani BJ, Kumar MP, Ravi G, Ravichandran S, Guduru RK, Yuvakkumar R (2019) Electrochemical and photoelectrochemical water oxidation of solvothermally synthesized Zr-doped α-Fe2O3 nanostructures. Appl Surf Sci 471:733–744

    Article  Google Scholar 

  36. Tu X, Xiao S, Song Y, Zhang D, Zeng P (2015) Treatment of simulated berberine wastewater by electrochemical process with Pt/Ti anode. Environ Earth Sci 73(9):4957–4966

    Article  CAS  Google Scholar 

  37. Fajardo AS, Martins RC, Silva DR, Quinta-Ferreira RM, Martinez-Huitle CA (2017) Electrochemical abatement of amaranth dye solutions using individual or an assembling of flow cells with Ti/Pt and Ti/Pt–SnSb anodes. Sep Purif Technol 179:194–203

    Article  CAS  Google Scholar 

  38. Alver Ü, Tanrıverdi A, Akgül Ö (2016) Hydrothermal preparation of ZnO electrodes synthesized from different precursors for electrochemical supercapacitors. Synth Met 211:30–34

    Article  CAS  Google Scholar 

  39. Selvarajan S, Suganthi A, Rajarajan M (2018) A facile synthesis of ZnO/Manganese hexacyanoferrate nanocomposite modified electrode for the electrocatalytic sensing of riboflavin. J Phys Chem Solids 121:350–359

    Article  CAS  Google Scholar 

  40. Dong G, Du B, Liu L, Zhang W, Liang Y, Shi H, Wang W (2017) Synthesis and their enhanced photoelectrochemical performance of ZnO nanoparticle-loaded CuO dandelion heterostructures under solar light. Appl Surf Sci 399:86–94

    Article  CAS  Google Scholar 

  41. Duan X, Zhao C, Liu W, Zhao X, Chang L (2017) Fabrication of a novel PbO2 electrode with a graphene nanosheet interlayer for electrochemical oxidation of 2-chlorophenol. Electrochim Acta 240:424–436

    Article  CAS  Google Scholar 

  42. Li X, Xu H, Yan W (2016) Fabrication and characterization of PbO2 electrode modified with polyvinylidene fluoride (PVDF). Appl Surf Sci 389:278–286

    Article  CAS  Google Scholar 

  43. Amiri-Aref M, Raoof JB, Ojani R (2013) Electrocatalytic oxidation and selective determination of an opioid analgesic methadone in the presence of acetaminophen at a glassy carbon electrode modified with functionalized multi-walled carbon nanotubes: application for human urine, saliva and pharmaceutical samples analysis. Colloids Surf B 109:287–293

    Article  CAS  Google Scholar 

  44. Chianeh FN, Parsa JB (2014) Degradation of azo dye from aqueous solutions using nano-SnO2/Ti electrode prepared by electrophoretic deposition method: experimental design. Chem Eng Res Des 92(11):2740–2748

    Article  Google Scholar 

  45. Croissant M, Napporn T, Léger J-M, Lamy C (1998) Electrocatalytic oxidation of hydrogen at platinum-modified polyaniline electrodes. Electrochim Acta 43(16–17):2447–2457

    Article  CAS  Google Scholar 

  46. Raoof J-B, Ojani R, Rashid-Nadimi S (2004) Preparation of polypyrrole/ferrocyanide films modified carbon paste electrode and its application on the electrocatalytic determination of ascorbic acid. Electrochim Acta 49(2):271–280

    Article  CAS  Google Scholar 

  47. Tashkhourian J, Hemmateenejad B, Beigizadeh H, Hosseini-Sarvari M, Razmi Z (2014) ZnO nanoparticles and multiwalled carbon nanotubes modified carbon paste electrode for determination of naproxen using electrochemical techniques. J Electroanal Chem 714:103–108

    Article  Google Scholar 

  48. Zhang L, Xu L, He J, Zhang J (2014) Preparation of Ti/SnO2–Sb electrodes modified by carbon nanotube for anodic oxidation of dye wastewater and combination with nanofiltration. Electrochim Acta 117:192–201

    Article  CAS  Google Scholar 

  49. Esmaelian M, Chianeh FN, Asghari A (2019) Degradation of ciprofloxacin using electrochemical oxidation by Ti/nanoSnO2–MWCNT electrode: optimization and modelling through central composite design. J Ind Eng Chem 78:97–105

    Article  CAS  Google Scholar 

  50. Amani-Beni Z, Nezamzadeh-Ejhieh A (2017) A novel non-enzymatic glucose sensor based on the modification of carbon paste electrode with CuO nanoflower: designing the experiments by response surface methodology (RSM). J Colloid Interface Sci 504:186–196

    Article  CAS  PubMed  Google Scholar 

  51. Güven G, Perendeci A, Tanyolaç A (2008) Electrochemical treatment of deproteinated whey wastewater and optimization of treatment conditions with response surface methodology. J Hazard Mater 157(1):69–78

    Article  PubMed  Google Scholar 

  52. Shoorangiz M, Nikoo MR, Salari M, Rakhshandehroo GR, Sadegh M (2019) Optimized electro-Fenton process with sacrificial stainless steel anode for degradation/mineralization of ciprofloxacin. Process Saf Environ Prot 132:340–350

    Article  CAS  Google Scholar 

  53. Ansari MH, Parsa JB, Merati Z (2017) Removal of fluoride from water by nanocomposites of POPOA/Fe3O4, POPOA/TiO2, POPOT/Fe3O4 and POPOT/TiO2: modelling and optimization via RSM. Chem Eng Res Des 126:1–18

    Article  Google Scholar 

  54. Li X, Xu H, Yan W (2016) Electrochemical oxidation of aniline by a novel Ti/TiOxHy/Sb–SnO2 electrode. Chin J Catal 37(11):1860–1870

    Article  CAS  Google Scholar 

  55. Alaoui A, El Kacemi K, El Ass K, Kitane S, El Bouzidi S (2015) Activity of Pt/MnO2 electrode in the electrochemical degradation of methylene blue in aqueous solution. Sep Purif Technol 154:281–289

    Article  CAS  Google Scholar 

  56. Zhou X, Liu S, Yu H, Xu A, Li J, Sun X, Shen J, Han W, Wang L (2018) Electrochemical oxidation of pyrrole, pyrazole and tetrazole using a TiO2 nanotubes based SnO2–Sb/3D highly ordered macro-porous PbO2 electrode. J Electroanal Chem 826:181–190

    Article  CAS  Google Scholar 

  57. Kaur R, Kushwaha JP, Singh N (2019) Amoxicillin electro-catalytic oxidation using Ti/RuO2 anode: mechanism, oxidation products and degradation pathway. Electrochim Acta 296:856–866

    Article  CAS  Google Scholar 

  58. Sandhwar VK, Prasad B (2019) A comparative study of electrochemical degradation of benzoic acid and terephthalic acid from aqueous solution of purified terephthalic acid (PTA) wastewater. J Water Process Eng 30:100381

    Article  Google Scholar 

  59. Martinez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35(12):1324–1340

    Article  CAS  PubMed  Google Scholar 

  60. Wan J, Liu B, Jin C, Li J, Wei X, Dong H, Xu Z, Gao M, Zhao Y (2019) Electrochemical oxidation of Acid Black 2 dye wastewater using boron-doped diamond anodes: multiresponse optimization and degradation mechanisms. Environ Eng Sci 36(9):1049–1060

    Article  CAS  Google Scholar 

  61. Martínez-Huitle CA, Rodrigo MA, Sires I, Scialdone O (2015) Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 115(24):13362–13407

    Article  PubMed  Google Scholar 

  62. Chianeh FN, Avestan MS (2020) Application of central composite design for electrochemical oxidation of reactive dye on Ti/MWCNT electrode. J Iran Chem Soc 17(5):1073–1085

    Article  Google Scholar 

  63. Singh N, Routara B, Das D (2018) Study of machining characteristics of Inconel 601in EDM using RSM. Mater Today Proc 5(2):3438–3449

    Article  CAS  Google Scholar 

  64. Aquino JM, Rocha-Filho RC, Bocchi N, Biaggio SR (2013) Electrochemical degradation of the Disperse Orange 29 dye on a β-PbO2 anode assessed by the response surface methodology. J Environ Chem Eng 1(4):954–961

    Article  CAS  Google Scholar 

  65. Yao Y, Zhao M, Zhao C, Zhang H (2014) Preparation and properties of PbO2–ZrO2 nanocomposite electrodes by pulse electrodeposition. Electrochim Acta 117:453–459

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Semnan University, Iran for financial and other supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farideh Nabizadeh Chianeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Figure 3 is updated

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, N., Nabizadeh Chianeh, F. & Arab, A. Efficient electrochemical oxidation of reactive dye using a novel Ti/nanoZnO–CuO anode: electrode characterization, modeling, and operational parameters optimization. J Appl Electrochem 52, 189–202 (2022). https://doi.org/10.1007/s10800-021-01634-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01634-1

Keywords

Navigation